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Introduction 

A secure and reliable electric power system is what most end-users expect from their supplier of 
electricity. In South Africa, scheduled power outages known as load-shedding has been experienced 
recently as the demand exceeded the generation capacity. This phenomenon is not unique to South Africa 
and in various parts of the developed world this is an ongoing challenge with the increasing demand of the 
load versus the generation capacity resulting in power systems that are being operated in a constrained 
state (Adewole, 2016). The continuous monitoring and detection of any unwanted condition and the 
mitigation thereof before any mal-operation occurs is the desired response to such a situation. 
 
The power system is comprised of the generation, transmission and distribution sections each containing 
many different multi-functional protection, automation and control devices known as Intelligent Electronic 
Devices (IEDs) that have advanced technologically to being able to self-monitor and communicate 
relevant information to other devices within the system as well as to the control centers or Supervisory 
Control and Data Acquisition (SCADA) systems. The ability of the IEDs to monitor themselves and the 
current power system conditions is known as situational awareness. (Apostolov, 2011). The technological 
advances in the communication, protection and control abilities of the IEDs have however resulted in a 
much more complex power grid in the pursuit of attaining a smarter grid. This complexity increases the 
likelihood of errors and reduces reliability of the system in general. The additional challenge of having all 
these various devices (usually from different vendors) with advanced communication functionality also 
introduces the issue of interoperability where these devices have to communicate with other devices 
within the power system network. 
 
The IEC 61850 standard was promulgated to address the issue of interoperability among devices from 
different vendors being able to communicate and share information among themselves. The IEC 61850 
standard has since its initial inception been extended with a second edition and various technical reports 
as well as to extend its application to other domains. An area of significant interest is that of condition 
monitoring (IEC 61850-90 Technical Report) as it offers substantial economic and operational benefits in 
its application within the power system. A condition monitoring system in general has to provide a 
continuous monitoring function that allows for the early detection of unwanted conditions and mitigate the 
onset of equipment failure. One of the objectives for this work is therefore the development of a motor 
condition monitoring system that is applied within an IEC 61850 communication environment.  
 
The condition monitoring functionality is implemented firstly by the detection and classification of four 
different types of induction motor faults using an Artificial Neural Network (ANN) which is trained and 
validated using real-time motor data within the MATLAB software environment. The induction motor data 
is applied as inputs to the ANN using the IEC 61850 analogue Generic Object-Oriented Substation Event 
(GOOSE) message. The ANN is then implemented onto a Real-Time Automation Controller hardware 
device which communicates with a motor protection IED using a binary GOOSE message to trip the 
breaker upon detection of a fault condition within the motor.  



The content of the paper is outlined as follows: A background to induction motors and the most common 
faults are described in the first part together with the laboratory set up for the acquisition of the real-time 
induction motor data. The second part presents the Neural Network training and validation implemented 
within the MATLAB software environment with a selected portion of the experimental results. Part three 
presents the complete system implementation with the Real-Time Digital Simulator (RTDS) and RTAC 
with the analogue GOOSE message results and binary GOOSE to the motor protection IED. Part four 
presents the real-time implementation of the neural network on the Real-Time Automation Controller 
(RTAC) hardware platform and Part five presents the conclusion to this work. 

 
1. Induction Motor Faults and Data Acquisition Lab Test Bench Setup 
Although the induction motor is very reliable it is almost inevitable that due its extensive use it could quite 
likely experience degradation leading to faults and ultimately motor failure. There is therefore a need for 
the early detection of the onset of these possible faults before it results in the induction motor failing which 
might lead to processes being halted resulting in financial loss. The following section presents and 
discusses some of the most common motor faults and focuses on the ones identified in this study. A more 
detailed survey and discussion of the condition monitoring and protection methods applied to medium 
voltage induction motors is presented by Zhang, et al., 2011.  

 

1.1. Common motor faults 

It is very difficult to find real-time fault data required in a knowledge-based system especially for a 
developing fault which is not easy for the operator to detect or identify. General motor faults together with 
possible symptoms are presented in Table 1. The common fault parameter for almost all of the faults is 
the Current. The current however does not change where there is unbalance or misalignment of the shaft. 
The faults that pertain to this work include the inter-turn fault (highlighted in yellow), bowed rotor (in red) 
bearing fault (in green) and the broken rotor bar (highlighted in blue). It is worthwhile noting that for all 
these faults the common parameter that is affected is the vibration. The next section presents some of the 
typical faults and methods used to identify them. 

Table 1: Motor faults and the associated symptoms  

 

 

 

 

 

 

 

 

 

 

 



 

1.1. Bearing Faults 

1.1.1. Bearing Faults 

Bearings are one of the most important components found in induction motors and more prone to failure 
than any other component. It is recorded that 40% of all faults in large machines and 90% in small 
machines are bearing faults (Riera-Guasp, et al.,2015, Supangat, 2008). The bearing structure and 
components are shown in Figure 1. Bearing faults can be due to race damage inner or outer race), rolling 
element or cage damage. Bearing faults could also be due to wear where the lifespan is exceeded, the 
bearing is overloaded, it is incorrectly assembled, due to manufacturer error or there is insufficient 
lubrication (Ludeca, 2011). 

 

 

Figure 1: Bearing structure and components (Riera-Guasp, et al., 2015) 

 

Vibration monitoring is one of the most commonly used monitoring techniques used. In order to measure 
vibration however, additional sensors have to be mounted onto the motor. The vibration frequency can be 
determined when detecting bearing faults. 
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where ODf   is the outer race defect frequency, rmf  is the rotor speed in revolutions per minute, n  is the 

number of balls, BD  is the Ball Diameter, PD  is the Pitch Diameter. 
 

The inner race defect frequency is given in Equation (1.2): 
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where IDf   is the inner race defect frequency. 

The ball defective frequency is shown in Equation (3.3): 

















 2

2

cos1
2 PD

BD
f

BD

PD
f rmBD                  (1.3) 

where BDf   is the ball defective frequency.  

The induction motor cage defect frequency is specified in Equation (1.4) as: 
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where CDf   is the cage defect frequency. 

 

1.1.2. Air gap eccentricities 

Air gap eccentricity faults can occur as a result of bearing wear or an unbalanced magnetic pull and lead 
to a non-uniform air gap as shown in Figure 2 resulting in the rotor geometrical centre being displaced 
with respect to the stator geometrical centre (Dlamini, 2014). These eccentricities can be either static or 
dynamic. For static eccentricities the air gap has a fixed minimal position and the minimal position rotates 
with the dynamic eccentricity. Usually a 10% eccentricity is allowed due to manufacturing and assembly or 
commissioning of the motor (Capolino, 2015). 

 

 

 

 

Figure 2: Rotor eccentricities: static (left), dynamic (middle) and mixed (right) Dlamini, 2014) 

A combination of static and dynamic eccentricities is referred to as mixed eccentricity shown to the right in 
Figure 2. The biggest risk with this type of fault is the possibility that there may be mechanical contact 
between the rotor and the stator which might lead to the induction motor failing. Methods used in the 
detection of eccentricities usually include Machine Current Signature Analysis (MCSA) that is a frequency-
based method that identifies sidebands in the stator line-current spectrum that is related to the 
eccentricity. There have been shown to be detection problems using the MCSA method given the 
relationship between the pole-pair number and the rotor slot number. Other more successful detection 
methods include using the terminal voltage spectrum when the induction motor is switched off (Samonig 
and Wolbank, 2017). 

The fault signature for detecting air gap eccentricities is defined by the following frequency in Equation 
(1.5): 
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where eccf  is the frequency of eccentricity, s  is the slip, m  is a constant and p  is the number of pole 

pairs. 
 

1.1.3. Broken rotor bars 

Broken rotor bars are responsible for more than 5% of induction motor failures. There are various 
methods used in the detection of broken rotor bars in induction motors including the hypothesis that the 
resistance of an induction motor will increase when a rotor bar is broken (Duan, 2005).  The rotor 
resistance is modified as derived from Equation (1.6): 
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where rr  is the rotor resistance referred to stator, N  is the total number of rotor bars, n  is the number of 

broken rotor bars, k  is the transformation ratio, and bR  is the rotor resistance per bar. 

 
The change in the rotor resistance is given by Equation (1.7): 
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where rr  is the rotor resistance referred to stator, N  is the total number of rotor bars, and n  is the 

number of broken rotor bars (Patel and Bhalja, 2015). 
 

Various reasons are proposed as to why the rotor bars break including magnetic stresses, thermal 
stresses due to abnormal operating conditions, inadequate casting, manufacturing defects, lack of 
maintenance, etc. A broken rotor bar results in rotor asymmetries which degrade the motor’s overall 
performance and shortens its lifetime (Toliyat, 2012). Methods used to detect broken rotor bars include 
Machine Current Signature Analysis (MCSA) which is a method based on the frequency, and also the 
Zero Crossing Time (ZCT) method (Duan, 2005). 

 
The asymmetrical movement of the rotor results in a backward rotating field at the slip frequency with 
respect to the forward rotating rotor. This prevents current flow and the magnetic field around this area will 
not exist. The backward rotating field induces additional frequency harmonics seen as sidebands to the 
fundamental harmonic component at frequencies given by Equation (1.8): 
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where brbf  is the broken rotor bar frequency, s  is the slip, m  is a constant and f  is the supply 

frequency. 
 

1.1.4. Shorted stator winding faults in induction motors 

The stator winding insulation is very important in induction motors as it prevents electrical short circuits 
between the motor windings. Stator turn-to-turn faults occur as a result of excessive heating, surge in 
supply, high humidity, vibration, contamination, amongst others. Stator windings faults represent 
approximately 38% of reported induction motor faults (as given in Figure 3).  

 

 

Figure 3: Stator faults (Dlamini, 2014) 

 



Different types of stator faults include: 
• Turn-to-turn short circuit faults; 
• Coil-to-coil short circuit faults; 
• Open circuit faults; 
• Phase-to-phase short circuit faults; and 
• Phase-to-ground short circuit faults (Duan, 2005). 

 
For the turn-to-turn fault the motor may appear to be operating normally at reduced efficiency. Methods for 
the detection of stator faults are MCSA where the harmonic components are examined including the 
sidebands in the stator line-current spectrum. On the onset of a stator fault characteristic fault frequency 
components in the stator current are produced as defined in Equation (1.9) 
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where 1stf  is the shorted turn fault frequency 1, f  is the supply frequency, m  is a constant, s  is the 

slip, p  is the number of pole pairs, and v  is the order of the stator time harmonics. 

 
Vibration analysis is also an option that is used when the possibility exists to install the sensors without 
compromising the normal operation of the motor. The shorted stator windings cause an unbalance force at 
twice the line frequency and multiples with modulation at the rotor speed.  

 
1.2. Lab-scale test setup 

A Machine Fault Simulator (MFS) is used to introduce common types of faults which occur in an induction 
motor during operation. This induction motor simulator is located within the laboratories of the Electrical 
Engineering Department at the University of Cape Town. For this particular motor fault simulator there are 
seven different types of 250W, 3-phase AC (Alternating Current) induction motors with the exact same 
specifications but having different types of faults. For this motor simulator the following faults can be 
introduced depending on the associated equipment used: 

 rotor unbalance; 
 rotor misalignment; 
 bowed rotor; 
 faulted bearings; 
 broken rotor bars; 
 stator winding faults; and 
 voltage unbalance and single phasing (Dlamini, 2014). 

 
For this research work only four types of motor fault conditions are examined together with the healthy 
condition as summarized in Table 2. The various motors used with each its own unique characteristic are 
those with faulted bearings, bowed rotor, broken rotor bar, and stator winding (inter-turn) faults. It is 
important to note that for the healthy condition (no fault) and the inter-turn fault the same motor is used 
with the option to select either a two or four winding inter-turn fault. 

Table 2: The different types of motor faults that are detected 

Number   Type of motor faults to be detected 
1 Bearing Fault 
2 Bowed Rotor 
3 Broken Rotor Bar 
4 Inter-turn Fault 
5 Healthy Condition 

 



 
Figure 4: The motor fault simulator DAQ system measured variables (Dlamini, 2014)  
 
There are twelve signals that are connected to various sensors within the data acquisition system as 
shown in Table 3. These include the 3-phase voltages, 3-phase currents, speed from the load drive, 
frequency from the Variable Speed Drive (VSD), vibration signals from 3 Accelerometers on the motor 
drive and one Accelerometer on the load drive (Dlamini et al., 2014). The signal conditioning modules 
condition the signals to the appropriate voltage levels for the DAQ system that connects to the computer 
with the LabVIEW software. The current and voltage sensors are connected to the Current LEM and 
Voltage LEM signal conditioning modules. 
 

Table 3: The input sensory data from the sensors 
Number of sensors Input data from sensors 
1 Phase A voltage 
2 Phase B voltage 
3 Phase C voltage 
4 Phase A current 
5 Phase B current 
6 Phase C current 
7 Speed 
8 Frequency 
9 Vibration X – Tangential  
10 Vibration Y – Radial 
11 Vibration Z – Axial 
12 Vibration Y– Radial (Load) 

 

This section presented some of the typical faults occurring within induction motors and the laboratory 
setup for the acquisition of the real-time motor data.  The following section presents the application of the 
sensory data from the lab-scale real-time motor data to the input of a neural network in order to detect and 
classify the correct fault condition. The ANN has 12 inputs from the sensors of the DAQ and 5 outputs 
which classifies the four specified faults as well as the healthy state. 

 

2. Neural Network implementation within the MATLAB software environment 

The techniques for detecting any fault timeously have ranged from time-based methods to frequency 
based signal processing techniques, and finally to computational intelligent techniques such as neural 
networks, fuzzy logic and support vector machines for the fault classification and detection. One of the 
precursors to application of these methods is however the identification of the correct features present in 



the monitored data. This is known as feature extraction using methods such as fractals (Maragos and 
Potamianos, 1999), Fast Fourier Transforms (FFT), wavelets and kurtosis (Marwala and Vilakazi, 2007) 
(Dlamini, et al., 2014).  
 
This section presents the implementation of the Artificial Neural Network (ANN) with MATLAB software 
environment. The initial work in the area of neural networks started with the feedforward NN proposed by 
McCulloch and Pitts (1943). The network topology generally refers to the number of input neurons, output 
neurons and the number of hidden layer neurons, together with the bias neurons for the respective layers. 
The main objective of this section is to determine the structure (topology) of the neural network for 
classification of the four induction motor faults. The design requirements as calculated for the network 
structure are that it: 

 should have twelve inputs; 
 should have five outputs (including the no-fault condition); 
 should be able to correctly classify four different induction faults including the no-fault (healthy) 

condition;  
 should be able to correctly classify the different induction motor faults, without the network 

structure being overly complex; 
 should implement supervised training with the batch training method where all inputs are 

presented to the network at the same time; 
 should use two gradient descent training algorithms with the structure being implemented whose 

solution converged fastest and was the least complex; 
 should be implemented in real-time on a hardware platform after the training phase has completed 

using static weight and bias values. 
 
These design requirements are determined by the number of sensors on the induction motor set, faults to 
be classified as presented in the first part of this paper, real-time implementation as well as other 
requirements specified for this research project. 
 

2.1. Neural Network topology 

Very broadly speaking NN topology could be divided into either feedforward networks where the input is 
propagated through the network structure in a left to right (forward) direction to the output, or recurrent 
networks where the output of the network is fed back to the input. There is no specific method to follow 
when designing the neural network topology. Although authors such as Haykin (1999) propose rules of 
thumb when selecting the number of input neurons for example, the topology design invariably changes 
based on a particular application. Careful consideration has to be paid to the number and type of inputs 
selected as these may influence the ability of the NN to be able to provide the correct classification 
(decision) boundary between different classes (motor faults). 
 

The single layer perceptron is generally applied to simple pattern recognition tasks (Rosenblatt, 1958). 
The structure of the artificial neuron which is also known as the perceptron with only one input layer and 
one output layer together with a bias and an activation function. The disadvantage of the single layer 
perceptron is that it is unable to solve a problem that is not linearly separable. 

 

Figure 5: The multilayer perceptron network with two hidden layers (3-4-4-2) 



The MultiLayer Perceptron (MLP) has the same features as the single layer perceptron, except that in 
addition to the input and output layers it has an added layer which is known as the hidden layer. Multilayer 
perceptron networks can have one or more hidden layers with each layer having its activation function 
(Figure 5) and any number of neurons in each layer. The main difference between the single layer and 
multilayer perceptron networks are that the MLP can define a decision boundary even for problems that 
are not linearly separable. Figure 5 is a 3-4-4-2 network, indicating the number of neurons found in the 
input, two hidden and output layers respectively.  
 
There are 12 inputs and 5 outputs as presented in the preceding section. In order to determine the 
number of neurons to place in the hidden layer(s) without the network being overly complex, the number 
of hidden layers and neurons are increased which effectively means an increase in network complexity. 
The method employed to determine the optimum number of hidden layers and neurons is to start with the 
initial structure having only one hidden layer with one hidden neuron and then gradually to increase this 
number until the network converged to a solution.  
 

2.2. Neural Network training algorithm 

Humans learn things by observing others or having a teacher. In the same way NNs learn or are trained 
either by supervised learning or unsupervised learning. This is accomplished by adjusting the weights if 
there is a difference between the desired network output and the current network output. For supervised 
learning the inputs and expected outputs are provided to the network during the training phase. The 
network weights and biases are changed in order to reduce the performance error during the training 
phase and obtain the required output. 
 
The Scaled Conjugate Gradient (SCG) algorithm is one of the training algorithms applied in this research 
work was proposed by Moller (1993) as a way to avoid the line-search procedure of conventional 
conjugate gradient algorithms.  
 
The Levenberg-Marquardt (LM) algorithm is the second training algorithm used and is designed to 
specifically minimize a sum-of-squares error. 
 
The Resilient backpropagation (RP) learning rule is the third training algorithm where the weight values 
are updated in such a way that the total mean squared error of the network is minimized over the entire 
training set. The backpropagation algorithm has two phases: 
Forward pass – In this stage the input is propagated from left to right through the activation functions of 
all the layers to the output of the network. 
Backward pass – In this stage the network error is calculated and used to adjust the network weights. 
The error is propagated backwards from the output through the network layer by layer. This is iteratively 
computed with the calculation of the local gradient of each neuron. 
 
Although not explicitly addressed in this paper, issues of generalization and stopping criteria are 
considered in this work. 
 

2.3. Neural Network Training Results 

The inputs and outputs are defined and the training phase starts. The input data is randomly divided into 
three groups; namely, training (70%), validation (15%) and test (15%) data sets. The stopping criteria for 
the training phase are minimization of squared error, minimum gradient, increasing validation errors and 
maximum number of epochs. If any of these conditions exist, the training phase stops and the weights are 
saved. Figure 6 shows the MLP in MATLAB having 12 input neurons, one hidden layer with 3 neurons, 
and an output layer with 5 neurons (12-3-5) with the network being trained using the Scaled Conjugate 
Gradient (SCG) algorithm. 
 
 



 
Figure 6: The NN structure (12-3-5) with 12 inputs, 3 hidden neurons and 5 outputs 
 
The NN training software algorithm is executed twelve times with the SAME network structure as per 
Figure 6 with varying weights and biases for each execution of the algorithm. The classification results for 
the 12-3-5 NN structure is shown in Table 4 with the highest percentage correct classification being 89.5% 
(in green) and the lowest percentage correct classification being 29.9% (in red). These results are 
graphically plotted in Figure 7 with the highest percentage correct classification in green and the lowest 
percentage correct classification in red. The Scaled Conjugate Gradient (SCG) training algorithm is used. 

 

Table 4: Results of NN Training with 1 Hidden Layer and 3 Hidden Neurons (12-3-5) 

Number of 
hidden 
layers 

Number of 
hidden 
neurons 

Percentage 
Correct 

Classification 

Percentage 
Incorrect 

Classification 
Training 

Algorithm 
1 3 82.8 17.2 SCG 
1 3 84.5 15.5 SCG 
1 3 84.4 15.6 SCG 
1 3 81.6 18.4 SCG 
1 3 76.1 23.9 SCG 
1 3 59.3 40.7 SCG 
1 3 54.2 45.8 SCG 
1 3 89.5 10.5 SCG 
1 3 81.4 18.6 SCG 
1 3 67.5 32.5 SCG 
1 3 86.9 13.1 SCG 
1 3 29.9 70.1 SCG 

 

 

 

Figure 7: The 12-3-5 NN structure depicting the percentage correct classification results 

The Confusion Matrix is shown in Figure 8 for the 12-3-5 NN structure where the overall correct 
classification of 89.5% and a value of 10.5% for misclassification are obtained. The bearing fault has a 
correct classification value of 86.8%, the bowed rotor fault has a correct classification value of 87.4%, the 
broken rotor bar has a correct classification value of 89.2%, the inter-turn fault is correctly classified with a 

Highest  % correct 
classification 

Lowest % correct 
classification 

Number of executions 



value of 89% and the no fault condition is correctly classified with a value of 94.9% which is the highest 
correctly classified condition. 
 
The Receiver Operating Characteristic curves for two out of the twelve algorithm executions are shown in 
Figure 9. The figure to the left of Figure 9 shows a much better classification than the one on the right with 
only a 29.9% correct classification. Although the result of cases of correct percentage classification is 
higher than that with the NN structure having one hidden neuron, it is still not able to fully distinguish 
between all classes for the stated problem. 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: The 12-3-5 NN structure depicting Confusion Matrix with the percentage correct classification 
results 

 
With an overall value of 10.5% of incorrect classifications, the 3-hidden neuron network structure although 
adequate in solving the classification problem, there is a possibility that certain classes might be 
misclassified. As part of the design strategy to determine the optimal number of hidden neurons for 
classification of the induction motor faults, the number of hidden neurons is now increased to 5 neurons. 
 

 

 

 

 

 

 

 

 

 

 

Figure 9: The Receiver Operating Characteristic (ROC) curves for the 12-3-5 NN structure  
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The results for the 12-5-5 NN structure for all three training algorithms are summarized in Table 5. The 
highest correct percentage classification is highlighted in green. The LM algorithm obtained a highest 
correct percentage classification value of 99.3%, the RP algorithm obtained a highest correct percentage 
classification of 96.6% and the Scaled Conjugate Gradient obtained a highest correct classification 
percentage of 97.2%.  

 

Table 5: Results of NN Training with 1 Hidden Layer and 5 Hidden Neurons (12-5-5) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The LM algorithm once again had the highest training time duration (highlighted in yellow) of 13:56 
(minutes and seconds) in 315 epochs. The SCG algorithm took 4:45 (minutes and seconds) to reach 
convergence in 773 epochs. The RP algorithm again reached the maximum number of epochs (3000) 
epochs in a time of 8:58 (minutes and seconds). Once more the RP algorithm required more time to 
converge. The algorithms that took longer to converge did not necessarily produce the best classification 
result as is indicated in Table 4.10.  For all cases presented, the LM and SCG algorithms stopped due to 
the validation error increasing after six consecutive epochs. The RP algorithm algorithms on the other 
hand also had cases where the maximum number of epochs was reached. 

 
In summary, the RP algorithm once again required more time (in terms of the number of epochs required) 
to converge than any of the other two training algorithms but the LM algorithm had the highest correct 
percentage classification although it took a longer time (in minutes and seconds) to converge in fewer 

Number of 
hidden 
layers 

Number of 
hidden 
neurons 

Percentage 
Correct 
Classification 

Training 
Time 
Duration 

Training 
Algorithm 
 

Number 
of Epochs 

Stopping 
criteria 

1 5 98.9 00:02:25 LM 55 VAL 
1 5 83 00:13:56 LM 315 VAL 
1 5 98.4 00:03:15 LM 73 VAL 
1 5 98.9 00:02:13 LM 47 VAL 
1 5 99.1 00:02:37 LM 58 VAL 
1 5 79.3 00:03:39 LM 80 VAL 
1 5 98.9 00:03:28 LM 76 VAL 
1 5 63.7 00:04:34 LM 102 VAL 
1 5 98.8 00:04:26 LM 99 VAL 
1 5 98.9 00:05:51 LM 130 VAL 
1 5 96.4 00:02:20 LM 50 VAL 
1 5 99.3 00:02:20 LM 54 VAL 

       
1 5 88.9 00:04:30 RP 1508 VAL 
1 5 94.5 00:08:58 RP 3000 MAX 
1 5 95.8 00:08:58 RP 3000 MAX 
1 5 86.9 00:05:22 RP 1824 VAL 
1 5 90.1 00:08:50 RP 3000 MAX 
1 5 96.3 00:08:00 RP 2645 VAL 
1 5 78.5 00:04:33 RP 1436 VAL 
1 5 96.6 00:08:43 RP 2880 VAL 
1 5 96 00:05:21 RP 1823 VAL 
1 5 86.8 00:03:02 RP 947 VAL 
1 5 95.9 00:06:34 RP 2262 VAL 
1 5 81.5 00:04:50 RP 1538 VAL 
       

1 5 94.8 00:03:33 SCG 583 VAL 
1 5 95.8 00:03:07 SCG 503 VAL 
1 5 96.7 00:02:32 SCG 393 VAL 
1 5 36.9 00:02:23 SCG 391 VAL 
1 5 87.1 00:03:44 SCG 596 VAL 
1 5 85.8 00:01:56 SCG 297 VAL 
1 5 85.9 00:01:48 SCG 300 VAL 
1 5 78.4 00:01:53 SCG 290 VAL 
1 5 97.2 00:03:10 SCG 499 VAL 
1 5 87.5 00:02:43 SCG 459 VAL 
1 5 96.6 00:03:41 SCG 586 VAL 
1 5 97 00:04:45 SCG 773 VAL 



epochs than was the case for any of the other two training algorithms. For all the algorithms other than for 
the instances where the RP reached the maximum number of iterations, training stopped as the error on 
the validation set continued to increase. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The training result for the RP algorithm for the 12-5-5 NN structure  

 
The training result for the highest percentage correct classification for the RP algorithm is presented in 
Figure 10. This shows that the training stopped at epoch 2880. The error on the training data set is slightly 
lower than that on the validation and test sets. The training however stops not on the minimization of the 
error to zero, but when the validation error continues to increase for six consecutive epochs. 
 
This section presented the MATLAB neural network implementation with a brief discussion of the topology 
with the feed-forward MLP being chosen where the number of hidden neurons are increased gradually 
until a suitable classification is obtained. Three training algorithms are implemented: Levenberg-
Marquardt, Scaled Conjugate Gradient and Resilient backpropagation. Finally, a selection of results is 
presented with 3 neurons in the hidden layer which is then increased to 5 neurons. The next section 
describes the implementation of the NN on a hardware platform. 

 
3. Real-time System implementation 

The hardware configuration for the system used for the real-time implementation case study is shown in 
Figure 11. The Real-Time Digital Simulator (RTDS) rack contains among others a network interface card 
for connecting to the Local Area Network (LAN). This card is known as the GTNET-GSE (Generic 
Substation Event) card (blue box in Figure 11) and is used for the publication of the GOOSE message 
onto the LAN.  
 
The configuration of the GOOSE message is performed within the RSCAD-Draft software within the 
GTNET block indicated by the purple box in Figure 11. As stated previously this GOOSE message 
contains twelve analogue data values. The analogue GOOSE message indicated by the yellow arrow is 
published by the RTDS GTNET (blue box) and the subscribing device is the SEL-3555 RTAC (red box).  
 
The RTAC (red box in Figure 11) is a real-time automation and gateway controller device which supports 
various communication protocols, e.g IEC 6113-3 (for Programmable Logic Controllers – PLCs) and also 
IEC 61850 communications, among others. The neural network algorithm is developed within the 
AcSELerator RTAC software environment using the IEC 6113-3 language and is discussed in Section 4. 
 



The induction motor status is defined in Table 2 in Section 1; i.e. Healthy (no fault), bearing fault, bowed 
rotor, broken rotor bar, and inter-turn fault. A binary GOOSE message (red arrow on the right) is published 
from the RTAC device indicating whether a fault is present or not. 
 
The SEL-710 motor protection IED (green box in Figure 11) subscribes to the binary GOOSE message 
from the RTAC device and publishes a binary GOOSE trip signal (blue feedback arrow) to the RTDS. 
Within the RSCAD-Runtime software environment a circuit breaker opens when a motor fault is present as 
indicated within the binary GOOSE from the motor protection relay. 
 

 
 
Figure 11: The configuration for the hardware implementation of the NN induction motor fault classification 
system 
 
The structure and validation of the dataset of the Generic Object-Oriented Substation Event (GOOSE) 
message is presented in Kriger, et al., 2013. The next section contains the configuration of the Analogue 
GOOSE message. 
 

3.1. Analogue GOOSE configuration and verification 

The four steps that are taken to implement the configuration of the analogue GOOSE message are shown 
in the flow chart in Figure 12 where the RSCAD software environment is used for the configuration and 
the GOOSE Inspector software environment is used for the verification of the published Analogue GOOSE 
message.  
 
Step 1 with the RSCAD Draft implementation of the 12 analogue data inputs is shown in Figure 13 with 
the 12 inputs being applied using lookup tables and up/down switches. 
 
Step 2 for the configuration of the GTNET-GSE Analogue GOOSE message using the SCL Editor is 
shown in Figure 14. It is important to note that the version of the editor only supported the use of GGIO 
Logical Nodes which are used for General Input and Output functionality (shown in the red oval in Figure 
14). 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: The flowchart detailing the steps  Figure 13: Step 1: RSCAD Draft 
for the analogue GOOSE development 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: Step 2: SCL Editor 
 
Step 3 where the Runtime development environment is developed is shown in Figure 15 with the 12 
Analogue values as described in Table 3 with the up/down switches selecting a new set of input values.  
 
 
 
 
 
 
 
 
Figure 15: Step 3: RSCAD Runtime 
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Figure 16: Step 4: RSCAD Draft 
 
Step 4 is where the published Analogue GOOSE message is verified. This is shown in Figure 16 with the 
data from the SCL Editor (top left) and the data values on the RSCAD Runtime window (bottom) being 
verified in the published GOOSE message shown in the GOOSE Inspector software (to the right). The 
green rectangles confirm the GOOSE Control Block Reference, the red rectangles confirm the Dataset 
Name and the blue rectangles confirm the MAC Address. (IEC 61850-8-1) (Kriger et al., 2013). 
 
 

3.2. GOOSE message configuration in SEL Architect Software 
 
The Analogue GOOSE message configured using the RSCAD SCL Editor is the publisher and the Real-
Time Automation Controller (RTAC) device is the subscribing device. In order for the publisher and 
subscriber to communicate with each other, the Configured IED Description (CID) files for each device 
need to be linked using the SEL Architect software. The CID file from the RSCAD SCL Editor is exported 
as an IED Capability Description (ICD) file and dragged into the upper window of into the SEL Architect 
Editor as shown in Figure 17. The same is the case for the CID file of the SEL RTAC. 
 
Figure 18 shows the Data objects with the Measured Variable (MV) shown by the green oval at the 
bottom, being used for the Analogue GOOSE subscription. The GGIO logical node is used (shown by the 
red oval at the top right) as the publishing device only supports this logical node as indicated earlier. 
 
Figure 19 shows the final step in the configuration process where the publishing device and subscribing 
device are mapped. With each successful step being indicated with the GREEN LED being lit. 
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Figure 17: ICD and CID file          Figure 18: GOOSE configuration of subscriber (RTAC) 
configuration for the publisher 
and subscriber 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19: GOOSE configuration – mapping and linking of publisher and subscriber 
 
 
 
4. Neural Network implementation on the Hardware Platform 

Not all aspects of the hardware implementation of the neural network is described in this section. The 
mathematical model which is implemented on the Real-Time Automation Controller (RTAC) is shown in 
Figure 20 for the 12-3-5 NN structure. A very small subset of the software algorithm implemented using 
the Statement List (STL) component of the IEC 6113-3 standard for Programmable Logic Controllers is 



shown in Figure 21 with the top section showing the inputs taken from the Analogue GOOSE message 
published from the GTNET-GE card within the RTDS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: The 12-3-5 NN structure implemented within the RTAC software environment  
 
 
 

 
 
Figure 21: A subset of the software algorithm for implementation of the 12-3-5 NN structure  
 
The RTAC output shown in Figure 22 showing firstly the detection of a Bearing fault at the top window and 
a Healthy state (no fault) at the bottom of the window during Runtime execution.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22: The output window showing the the fault classification for the 12-3-5 NN structure  
 
This section presented the neural network implementation on the RTAC Hardware device within the SEL 
RTAC software environment. The input to the algorithm is received with the data contained in an 
Analogue GOOSE message received from the GTNET-GE Publishing device within the RTDS. The binary 
GOOSE configuration is not covered in this paper. The next section provides the conclusion to this work. 
 
 
5. Conclusion and Future Work 

The paper presented the condition monitoring system implementation using the real-time induction motor 
data applied as input to an Artificial Neural Network. The training, validation and testing of various neural 
network topologies in the MATLAB software environment are presented together with three training 
algorithms. The NN is used to detect and classify four types of induction motor faults including the healthy 
motor state. The weights of the successfully trained neural networks within the MATLAB software 
environment are saved and implemented on a real-time hardware device. The input data to the ANN 
implemented on the Real-Time Automation Controller (RTAC) device, are acquired from an analogue 
GOOSE message sent from the Real-Time Digital Simulator (RTDS).  The ANN algorithm successfully 
detects and classifies any fault condition existing within the applied input data. A binary GOOSE message 
communicates with the Motor Protection IED and sends a trip signal for any fault condition. A proof-of-
concept lab hardware implementation system is presented which allow for both Analogue and Binary 
GOOSE messages and allowing for IEC 61850 standard communication between different devices within 
the system. 
 
Future work include the real-time application of the motor data in the analogue GOOSE message which 
would ensure a complete real-time implementation of the system. Additional work includes the embedded-
based implementation using the IEC 61850.lib library which contain logical nodes from Edition 1 and 
Edition 2 of the IEC 61850 standard. 
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Abstract 

Induction motors are extensively used in various industry applications in fans, pumps, wind turbines and generators to name but a 
few applications. Although the induction motor is very reliable it is almost inevitable that due its extensive use it could quite likely 
experience degradation leading to faults and ultimately motor failure. There is therefore a need for the early detection of the onset of 



possible faults before it results in the induction motor failing which might lead to processes being halted which ultimately result in 
financial loss. The proposed solution to the detection of developing motor faults has to be fast, accurate and able to halt the motor 
before catastrophic failure.  

Various techniques are used in the detection of different types of motor faults where a single method is not always preferred in the 
detection of multiple motor faults. These methods include signal processing techniques applied in the frequency domain but it has 
the disadvantage of being applied to static and not real-time dynamic systems. This method although useful cannot be applied in the 
real-time detection of induction motor faults. 

The area of artificial intelligence spans various branches of computer science and engineering where machines are built that perform 
tasks that would generally require human intelligence. Artificial Neural Networks (ANNs) which try and mimic the way the human 
brain functions, have been shown to work well when applied to real-time systems. The application areas for the use of neural 
networks include pattern recognition, classification and prediction. This research proposes the use of artificial neural networks as a 
single technique in the detection and classification of four different types of induction motor faults in an IEC 61850-based 
environment. 

The artificial neural network is trained in the MATLAB software environment using off-line historical data to detect and classify the 
four types of induction motor faults. The weights and biases of the trained neural network are stored. These are then used in the 
neural network software algorithm developed on the Real-Time Automation Controller (RTAC). A real-time case study is presented 
where a test bed is built using the Real-Time Digital Simulator (RTDS) GTNET-GSE card to publish an Analogue GOOSE message 
containing the data obtained from the motor fault simulator data acquisition system. The subscribing device is the RTAC that 
contains the neural network algorithm for fault classification. The output of the neural network algorithm publishes a Binary GOOSE 
message to a subscribing motor protection IED. The IED in turn publishes a Binary GOOSE message to the GTNET-GSE subscriber 
to indicate the status of the fault classification algorithm. 

 
 


