Electric Machine Models in the RTDS Simulator and their Applications

Part II: Poly Phase Machines

Dr. Ali Dehkordi

RTDS Technologies Inc.

Canada

Content of the Presentation

Introduction & Motives for Modeling Poly-Phase Machines

Challenges and a Brief History

Analysis of Poly Phase Synchronous Machines

Developed Models and Simulation Results

Applications

Conclusions

Introduction & Motives for Modeling Poly-Phase Machines

What is a Poly-Phase Machine?

• 3 or More Phases on the Stator or Rotor (up-to 18 or 21)

Types of Poly-Phase Machines

- Symmetrical Displacement
- Split Phase or Multi Stator
- Sets of 3-Phases with no Magnetic Coupling (Mechanical Coupling Through the Shaft)

Introduction & Motives for Modeling Poly-Phase Machines

Advantages of Poly-Phase Machines

- Reduction in Electric Torque
 Pulsation
- Reliability and Redundancy
- Lower Current Ratings / Phase
- Lower Ratings for Power
 Electronic Converters
- Noise Characteristics, Copper loss, etc.

Applications of Poly-Phase Machines

- Naval Applications:
 - Submarines, ElectricShips
- New Schemes of Wind Turbines
- Electric Traction
- Electric Vehicles

Introduction & Motives for Modeling Poly-Phase Machines

Why Real-Time?

- Real-time digital simulation is a fully digital simulation where all calculations required to determine the transient state of the power system and servicing of I/Os are completed within a time interval equal to the simulation time-step.
- Simulation results are in synchronism with the real-world clock.
- Real-time response provides the possibility for closed-loop testing of equipment.
- Recent inquiries by customers in the industry motivated us to develop poly-phase machine models.

Challenges of Modeling Poly-Phase Machines

Frame of Reference Solution: **Phase Domain**?

- Challenge of forming the inductance matrix
- Lack of Data
- Computational Burden

Implementation?

- Size of Simulation Time-Step:
 - Depends on the Application
- Platform:
 - Processor? FPGA?
- Integration algorithm, saturation, consistency with other models etc.

Challenges of Modeling Poly-Phase Machines

- A Comprehensive Analysis in Rotor Frame of Reference Seems Necessary for This Research Work.
- Question: Is There a DQ Transformation that Applies to Any Number of Phases?

History

Two Reaction Theory

- Andre Blondel
- Robert E. Doherty
- C. A. Nickle
- Robert H. Park

Operational Calculus and Symmetrical Components:

- Oliver Heaviside
- Charles L. Fortescue
- Edith Clarke
- Yu H Ku

What Are the Goals of Such Analysis?

- Understanding the machine and its winding arrangement
- Predict its behaviour
- Equivalent circuit and parameters
- Suitable method for simulation

Symmetrical Components:

•••

Symmetrical Components:

- Symmetry
- Roots of X^N = 1
- Any Number of Phases
- Rotation
- Sum of the elements in each row is zero except the first row

$$\alpha = e^{j\delta}$$
 $\delta = \frac{2\pi}{N}$ N = Number of Phases

Transformation from Symmetrical Components to General Two-Phase $(\alpha\beta)$ For a N-Phase System:

Transformation from Phase Quantities to General Two-Phase ($\alpha\beta$) For a N-Phase System:

$$\left[C_{\alpha}^{A} \right] = \left[C_{\alpha}^{1} \right] \cdot \left[C_{1}^{A} \right]$$

$$\begin{pmatrix} f_d \\ f_q \end{pmatrix} = \begin{pmatrix} \cos(\theta_r) & \sin(\theta_r) \\ -\sin(\theta_r) & \cos(\theta_r) \end{pmatrix} \begin{pmatrix} f_\alpha \\ f_\beta \end{pmatrix}$$

In some conventions the signs are reversed

Application of DQ Transformation to the Phase-Domain Inductance Matrix of a N-Phase Machine Assuming Sinusoidal Distribution of the Windings and Permeance:

- The proposed DQ transformation diagonalizes the inductance matrix of the machine.
- An equivalent circuit can be achieved in DQ frame of reference with multiple zero sequence circuits.

$$\begin{bmatrix} L_{lq} \end{bmatrix} = \begin{bmatrix} L_{ls} & 0 & 0 & \dots & 0 \\ 0 & L_{ls} + M_{os} + L_{2s} & 0 & \dots & 0 \\ 0 & 0 & L_{ls} & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & L_{ls} + M_{os} - L_{2s} \end{bmatrix}$$

DQ Equivalent Circuit of a Symmetrical Multi-Phase Synchronous Machine:

Symmetrical Multi-Phase

Multi-Star

100

Multi-Star Winding Configuration and Transformation to Fundamental Winding Configuration (180° Phase Progression)

• l winding sets (stars) with k phases for each winding, angular displacement = π/N

$$\left[W_{2\times3}\right] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

360° Phase Progression of Windings or two-pole symmetry

 Fortescue's Symmetrical Component Transformation

180° Phase Progression of Windings or single-pole symmetry

A New Symmetrical Component
 Transformation for 180° Phase Progression

$$\left(f_{\alpha 1} \, f_{\alpha 3} \, f_{\alpha 5} \, f_{\beta 5} \, f_{\beta 3} \, f_{\beta 1} \right)^T = C_{\alpha}^a \cdot \left(f_a \, f_b \, f_c \, f_d \, f_e \, f_f \right)^T$$
 where:
$$\left[C_{\alpha}^a \right] = \left[J^{-1} \right] = \left(\frac{2}{N} \right) \cdot \begin{bmatrix} 1 & \cos(\delta 1) & \cos(2\delta 1) & \cos(3\delta 1) & \cos(4\delta 1) & \cos(5\delta 1) \\ 1 & \cos(3\delta 1) & \cos(6\delta 1) & \cos(9\delta 1) & \cos(12\delta 1) & \cos(15\delta 1) \\ 1 & \cos(5\delta 1) & \cos(10\delta 1) & \cos(15\delta 1) & \cos(20\delta 1) & \cos(25\delta 1) \\ 0 & \sin(5\delta 1) & \sin(10\delta 1) & \sin(15\delta 1) & \sin(2\delta 1) & \sin(25\delta 1) \\ 0 & \sin(3\delta 1) & \sin(6\delta 1) & \sin(9\delta 1) & \sin(12\delta 1) & \sin(15\delta 1) \\ 0 & \sin(\delta 1) & \sin(2\delta 1) & \sin(3\delta 1) & \sin(4\delta 1) & \sin(5\delta 1) \end{bmatrix}$$

$$\delta 1 = \frac{\pi}{6}$$

100

Treatment of Leakage Inductance Matrix

• Application of symmetrical component or $\alpha\beta$ transformations with 180° phase progression diagonalizes the Toeplitz-structured leakage inductance matrix

$$\begin{bmatrix} L_{ss-l} \end{bmatrix} = \begin{bmatrix} l_0 & l_1 & l_2 & \cdots & -l_3 & -l_2 & -l_1 \\ l_1 & l_0 & l_1 & \cdots & -l_4 & -l_3 & -l_2 \\ l_2 & l_1 & l_0 & \cdots & -l_5 & -l_4 & -l_3 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ -l_3 & -l_4 & -l_5 & \cdots & l_0 & l_1 & l_2 \\ -l_2 & -l_3 & -l_4 & \cdots & l_1 & l_0 & l_1 \\ -l_1 & -l_2 & -l_3 & \cdots & l_2 & l_1 & l_0 \end{bmatrix}$$

$$\begin{bmatrix} L_{ls-h1} \end{bmatrix}^{dq} = \begin{bmatrix} L_{ls-h1} & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & L_{ls-h3} & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & L_{ls-h5} & \cdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & L_{ls-hm} & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & L_{ls-h5} & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & L_{ls-h3} & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & L_{ls-h1} \end{bmatrix}$$

$$L_{ls-hm} = l_0 + 2 \cdot \sum_{k=1}^{truc(\frac{N-1}{2})} l_k \cdot \cos(m \cdot k \cdot \delta 1)$$

Equivalent Circuit in DQ frame of Reference

- Additional zero sequence circuits
- A homo-polar zero sequence circuit with odd number of phases

Features and Capabilities of the Model

- Up to 4-star synchronous machine model with 3-phase stars
- Implemented in both main and substep
- Access to multiple neutrals or all winding ends

Number of Phase	3	6	9	12
Execution Time (ns)	446	690	997	1330

3-Phase Mac, Single-Phase Fault:

5-Phase Mac, Single-Phase Fault:

2-Star Mac, 6-Phase Fault:

3-Star Mac, Single-Phase Fault:

Application Example:

- A typical electric network of a marine vessel consisting of:
 - A dual star generator and rectifiers
 - A DC bus
 - Battery storage and hotel load
 - Propulsion system, a dual star PMSM and two 3-phase converters

Performance of the Multi-Star Generator in Steady-State:

- Generator currents represent the dual star arrangement
- Electric torque contains the12th harmonic component

Performance of the Motor Drive System during the Loss of a Converter Leg:

- PMSM is supplied through two 3-phase converters
- The gating signals to phase A of converter
 1 are suddenly blocked.
- The variations of voltages are shown.
- Drive system can maintain the speed even with the loss of a few converter legs.

Conclusions

Based on a Generalized Method of Vector Space Decomposition (VSD), Analysis of Symmetrical Poly-Phase and Multi-Star Synchronous Machines is Presented.

Detailed and Flexible Transient Poly-Phase Synchronous Machine Model are Developed and Validated for Electromagnetic Transient Program and Real-Time Digital Simulation.

A Typical Power System Circuit of a Marine Vessel is Simulated using the Introduced Models. The Implementation is Similar to that of a Wind Turbine with such Machines.

Demonstration of A Typical Power System Circuit of a Marine Vessel Simulated using the Introduced Models

www.rtds.com

Contact us: dehkordi@rtds.com

