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OFF-GRID POWER SYSTEMS IN NORTHERN CANADA

http://www.crossroads.ca/northlands-first-

PR S « Many communities lacks year-around land transportation
« Rely on winter roads for fuel and goods transportation
« Primarily rely on diesel generation for electricity.

« Environmental risks related to diesel transportation and
storage.

« Emissions and spills during use.

- Utilization of local renewable energy sources can reduce the
reliance on diesel.

 Solar energy, Bio-mass, Mini-hydro, etc.

« PV-Diesel energy systems have emerged as one potential
solution
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PV-DIESEL OFF-GRID POWER SYSTEMS
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700 » Diesel generators operating at undesirable output
600 - levels can result in low efficiency and loss of life.

* PV power curtailment to accommodate minimum
diesel generation makes investments in PV
unattractive.

200

100

| | | . - Energy storage with proper energy management
i © Hour ? ®  strategy can improve the situation
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PV-DIESEL-BATTERY MICROGRIDS

Battery energy storage (BES) is currently the technologically most feasible option.

Energy management system of a PV-Diesel-Battery microgrid optimizes the operation
over period of time such as 24 hours.

« Minimizes operating costs, emissions, and component degradation
- Maximizes the utilization of renewable sources
Two possible operating modes
« Diesel generators forms the grid
« BES system forms the grid
A power management system is required to ensure stable operation of the microgrid.
« Short-term power balance, seamless transition between operating modes
« Secondary voltage and frequency control
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MICROGRID CONTROL SYSTEM

« A microgrid control system controls the microgrid assets to achieve multiple objectives of
energy and power management systems.

[ Microgrid Control System Hierarchical levels ]

Optimizes the overall operation

Tertiary Control

Optimum
Operational Plan
ria mmand L4 _
IEEE 2030.7- fé?‘f? f?easta uiieh ﬁ?rﬁﬂ%? Respnsc e
requwement as fmlcrogrl ontrol ers to pu -~ - f ---------- ¢_l
help the deve opment of microgrid control system Primary| Local Local Local | !
functionse Manage transitions Control |Control] ~ [Control| |Control}
\----------TI-.-----------TIi ----------- |---—' Shorter
« Maintain stable voltage and S O e
fre q uen Cy PV Battery Diesel Plant
« PQ and Vf control
| Loads |
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MICROGRID CONTROL SYSTEM TESTING

« |[EEE 2030.8-2018 standard describes test scenarios that can be used to assess
whether a microgrid controller complies with the requirements specified in |IEEE
2030.7-2017 standard.

- Different techniques have been used to assess the performance of microgrid control
systems:

— Pure Simulation

— Hardware Test Benches

— Power Hardware in the Loop (PHIL)

— Controller Hardware in the Loop (CHIL)
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MICROGRID CONTROL SYSTEM TESTING

« Hardware in the loop (both CHIL and PHIL) has become a popular method to
validate microgrid control systems.

: g e
Simulated Network

RTDS Simulator . Microgrid
i ~25- s

» Closer real world testing conditions

« Perform wide array of scenarios

TTTTTTT

ST

« HIL testbeds could facilitate faster
and more accurate design |
iterations oy S

« Save engineering time

. Cost-effective ‘
https://www.rtds.com/ Devices Under Test

USER SPOTLIGHT SERIES 2.0 BY lll|RTDS 10

Technologies




PROBLEM STATEMENT AND AIMS

« A microgrid controller needs to be customized to the given system and
underlying requirements

Problem * Majority of microgrid CHIL testbeds are implemented for microgrids
Statement connected to stiff grids.

« To develop a microgrid power management system for an isolated power B
system consisting of PV, diesel generation, and BES.

 Setup a CHIL simulation setup for testing the microgrid power management
system y
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METHODOLOGY

Development of a real-time |dentify and design the Validate the develobed real-time
simulation model of an > algorithms to implement [ <imulation r?wodel
isolated microgrid power management functions

Selection of a suitable hardware
device and implementation of the
secondary control algorithms

Validating the performance of the
implemented controls using CHIL
simulations
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MICROGRID TEST SYSTEM
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ENERGY MANAGEMENT SYSTEM (EMS)

« EMS uses an optimization framework to obtain the
minimum daily costs and emissions.

Tertiary Control

Optimum
Operational Plan

 For the considered control horizon, the derived optimum

Secondary Control

operational plan suggests: i i, T - ,
« Power commands for the two diesel generators along with i Canirol Control| | Contral] 1Y
their on/off status R SRR 7
« Hourly power commands for the battery unit =1 H &1
PV Battery Diesel Plant

« EMS adjusts the derived operational plan at regular
intervals to compensate for forecast errors

Loads

« Uses a Receding Horizon Model Predictive Control
framework.
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POWER MANAGEMENT SYSTEM (PMS)

« |EEE 2030.7-2017 states dispatch and transition functions as
the core level functions of a microgrid controller.
 Dispatch function
— Balances power generation and demand under various Secondary Control
operating conditions
— Re-dispatches DERs according to the changes in load and
generation

Tertiary Control

Optimum

— Follow the optimum operational plan it
« Transition function Y Battery | [Diese] Plant
— Manage transitions of the microgrid (reconnection,
planned islanding, unplanned islanding)
— Switch the dispatch function into different modes

Loads
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PMS: DISPATCH FUNCTION

« The designed dispatch strategy integrates the

, , . _ Table 1: Constraints of dispatch function
following optimum control signals coming from

e Parameters Criteria
an optimization framework: BESS <OC Lmitations:
- start/stop signals for the diesel generators SOCmin = SOC = SOCpax
(U P o) Active Power Limitation :

EMS PgEss < Peess < PgEss
« BESS power reference (Pggs3)

- Dispatch strategy is based on the constraints Diesel Plant Active Power Limitation:
. ) rated rated
summarized in Table 1. b sg3prated 0.3Ppis—n < Ppis-n = Ppis-n
DIS—n 2 1DIS—n

Fuel efficiency

Reserve Generation Capacity | Reserve Power Limitation:
(RGC) Por > P —p
RGC = T Available Load
Prgc = KLPL + KpyPpy
Deal with random

nature of PV and load
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GENSUP
Bispatch

PMS: GENSUP DISPATCH

Mlnlma”y adeSt BESS BESSamadttimetn®@n  Emestency - OFF Emergency\, Emergency - ON

power reference. mitoba dfdd SIS 1 W ¥
Determine Ugllvés_l & Ugllvés_z
FOI ‘AN ) Based on eq. (4.1)

Yes

al

EmergﬁbeCk the EMS

jvel signals

rated
PV : MPP 0.3PFst, 0.3P5s%,,
Pref —
_BESS | Planned Islanding
Transition PV : MPPT PV : MPPT 1
A f _ pEMS f A
Maintain PErss = Phat v Pgrss =0

vip—un -

ref —
PBESS =0

adequate reserve J

Battery: Charging or Discharging —o
f
PEiss  |[PEyss = —(Ppv + Ppis—n(max) — Prirao)) € [Phigg 0.6]
v - _/
Planned Islanding
Transition

=0

DIS—2
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PMS: ISLANDED DISPATCH .. coscindbiiisssgiotsrnen oo
“
Dispatch
No

« System switch to GENSUP mode

— TTEMS
Upis-1 = Uppg’4

Upis—2 = U,

\ 4

Emergency - OFF

Higlkear apdyeelativednlow PV
BigsehjsisineN atidpibdrged

Pev&npesdirsssdnetigk bmode Yes
» Energy reserve scheme

Diesel Plant
Available?

Ppy + Pited < Pripco

OR
Battery is Charging: : Had: SOC < SOC,y;
attery 1s Charging Ppy is Curtailed: Ppv + Prgss (rated) > PL+RGC < min
| Pprss = P, — Ppy Ppy ~ Py v
A< *\ Pgrss ~ 0 Battery is Discharging:
A
| Battery is discharging: Ppgss = Py — Ppy Emergency - ON
Energy reserve to p b _p @ Shed non-critical loads @ v
BEss = P — Ppy
prolong the_ Pohed = Prirac — (Ppv + Piies) Start Diesel Pl
system operation ) A tart Diese Flant g J
f — — — — — — — (Reconnection Transition)
. . |Yes Shed
I Shed Priority Interruptible
Loads Loads
| N Maintain adequate reserve
0
\ \N —
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PMS: PLANNED ISLANDING PROCESS

Planned Islanding
Process

Unload the diesel plant:

BESS _
PBESS — P, 4 — Ppy
BESS _
ref - QLoad

Open the diesel breaker and
enable islanded dispatch
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PMS: RECONNECTION PROCESS

Reconnection
Process

Turn on active
synrhoniziation scheme

(SynchPMS=1)

Measure the voltage
and frequency

Close the breaker and enable |
GENSUP dispatch -
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PMS: UNPLANNED ISLANDING

« Unintentional islanding events are detected by inspecting the status of diesel plant
breakers.

« Upon unintentional islanding, the following is performed:

— Shed non-critical loads (Ps,q) determined by (A) based on the load priority to avoid
unnecessary load shedding.

Pshed = PL+rgc — (Ppv + PRESS (A)

— Switch the BESS control to grid-forming.
— Switch to islanded dispatch strategy.
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HARDWARE IMPLEMENTATION

Optimum GOOSE MESSAGES
(— operational plan
Meters values, breakers Status, SOC
EMS J
N
‘\ SEL RTAC-3350) . RTDs
c o Power
Optlmlldtlﬂlj Management
“7‘\ \ System(®MS) |  [II]
Forecasting GOOSE MESSAGES
engine )

DER control mode , reconnection,
Updated system —» islanding, synchronization and power
status commands.
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HARDWARE PROGRAMMING

* Finite State Machines (FSM) are a simple computational model that represents the
logic design of many computer and automation applications.

- Employed in designing the sequential logic circuits of applications such as robots,
vending machines and traffic lights.

« FSM based approach was used in implementing the PMS

« Use of FSM makes it easy to assemble dead bands between the states, which
prevents frequent switching between different cases.
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HARDWARE PROGRAMMING

[ Decision tree to FSM conversion ]
. o SOCmm - ]-0(7 . o .
Decision Tree 50C,.. = 90(7(; Finite State Machine
Yes No Yes :(>
@ @ @ SOC < 9%
SOC > 11% SOC > 91% 1% deadband
@
SOC < 89%—
—
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LABORATORY SETUP

Network Switch

0461 o
©

T )

PC SEL RTAC
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HUMAN MACHINE INTERFACE

Control Window!




HUMAN MACHINE INTERFACE

Bat Unit Plots

l Active Power: £ N REactive Power

Bat BRK is closed

Meter Values

P_Bat -0.239 MW

Tags.Pdisl Tags.Pdis2 @ Tags.Pbatms TagsQn @ Tags.Qbatms

USER SPOTLIGHT SERIES 2.0 BY lll|RTDS 27

Technologies




RESULTS

« The developed CHIL-based testbed was used to
demonstrate the applicability of the hierarchical
controller to implement energy management over a 24-
hour control horizon.

Optimum operational plan

(a)
G 600
©
o
e
o
[
< 800 (b)
L 600 :‘ Pois-1 —Ppis.2 —Pgess _Pspill ‘ 1
85200 ]
QO ~-200- ‘ e — ‘ i
(c)
O 50 _
O
w 0 L Il 1 1
0 5 10 15 20

Time(Hours)

Fig. 20: Optimum operational routine: (a) Forecasts, (b) Dispatch, and (c) SOC
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System actual operation
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0 | | | 1
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Fig. 21: System actual operation: (a) active power, (b) reactive
power, (c) spilled power, (d) SOC
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RESULTS

[ Diesel minimum loading scenario (8th hour)]

0.3
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modifies BESS power level 0.1 !

_0.15 | | | | | | | | |
71 7.2 7.3 74 75 76 1.7 7.8 7.9 8
Time (Hours)

Fig. 22: Diesel minimum loading scenario (8t hour): Active power
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RESULTS

[ DIS-1 overloading scenario (23rd hour) ]
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Fig. 23: DIS-1 overloading scenario (22" hour): Active power
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RESULTS

[ Results from 15th hour, when SOC reaches SOCyx ]

(@)

0.6 T
\ ..MPP
PV system starts Sore— | I n . ] pv : Limitda Power
tracking the load S T e e R A U A =
5 02f BESS charges -
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maximum B 75 MPPT Mode ] ower band setpoint
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965 | | | | | |
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Fig. 24: Results from 15™ hour, when SOC reaches SOCyx: (a) active power and (b) SOC
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RESULTS — S
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[ Planned islanding at the start of 9th hour ]

Frequency (Hz)
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588 8 601 8 602 8 603 8.004 0.95 : : :
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- Battery forming the grid — — Breake, Command
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Time (Hours) Time (Hours)

Fig. 25: Planned islanding at the start of 9t hour: (a) active
power, (b) reactive power, (c) frequency, (d) AC voltage, (e)
diesel unit breaker status, and (f) battery control mode
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Fig. 26: Reconnection at the start of 215t hour: (a) active power, (b) reactive power, (c)
frequency, (d) AC voltage, (e) diesel unit breaker status, and (f) battery control mode
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CONCLUSIONS

- A power management system was designed for an off-grid power system PV, Diesel

generation, and BES, and implemented on a SEL RTAC 3350 hardware.

« PMS could successfully navigate along the power dispatch schedule provided by the EMS while

adapting to the limitations of the units to attain stable microgrid operation.

« CHIL simulation setup implemented using RTDS® real-time simulator provided highly flexible

environment to test the functionality of the power management system.

 Setting up of IEC 61850 GOOSE message-based communication between RTDS and SEL
RTAC unit was expedient.

« The competence of the IEC 61850 GOOSE communication to facilitate the interaction
between the PMS and the microgrid components was validated.
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