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DISTRIBUTED REAL-TIME SIMULATION

Benefits and approach of distributed Real-Time Simulation:

« Increase of computational power
« Coupling of simulators from different

manufacturers
e Interconnection of laboratories for HIL and Primary Simulator
PHIL Transmission system

» No exchange of confidential models required
« One simulator operates as primary simulator
with which various secondary simulators can - Secondary Simulator Secondary Simulator
] winlele Distribution system - Distribution system
co-simulate
« In this case: transmission system is running
on primary simulator, distribution systems
on secondary simulators
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LABORATORY - FAU-LEES

6 NovaCor chassis

1 Opal-RT OP5707 simulator

« Speedgoat real-time target

1 LANTIME M1000 GPS clock

« 6 Omicron amplifiers

« 6 protection devices (SIPROTEC5-
75X85 and PS441 and MiCOM P130C)

« Connection to a PHIL and Micro Grid

laboratory by use of amplifiers from

Spitzenberger & Spies and Triphase

and the Aurora Protocol

7/:5l —~ =
' 3552
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Laboratory set up at FAU for HIL
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AT

ENERGYLAB 2.0 - KIT-IAI

Hardware Infrastructure - e
« Numerous Opal-RT simulators : S ———
« Busbar matrix connected to:

« Transformers, converters, PV systems,
battery storage units, charging stations
and 3 Living Labs

« 1 MVA PHIL system
« Control, Monitoring & Visualization Center

* Including smart meters distributed

throughout the whole campus

|

Project info: https://elab2.kit.edu
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https://www.elab2.kit.edu/english/index.php

AT

ENERGYLAB 2.0 - KIT-IAI

Modeling and Simulation Setup
« 341 NovaCor chassis with 30 (38) cores in total
« Modeling pipeline:
« PowerFactory — PSS/E — RSCAD
« Surrounding hardware infrastructure can be
interfaced directly, via Aurora or via Ethernet

Lo ‘. Export Import
tTeTe ﬁ PSS/E ﬁ )

+++++++
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DISTRIBUTED REAL-TIME SIMULATION

Test setup:

*  Coupling of RTDS simulators located in Erlangen (E) and
Karlsruhe (K)

——

« Linear distance between Erlangen and Karlsruhe: 200 km

«  Simulator in Erlangen (FAU) is primary simulator,
simulator in Karlsruhe (KIT) is secondary simulator

*  For the implementation VILLASnode™ of RWTH Aachen is
used (compatible with OPAL-RT, RTDS, ...)

Lab 1 Lab 2

Real-time ~ Real-time DRTS
Linux Linux Map of Germany

Source: RWTH Aachen
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DISTRIBUTED REAL-TIME SIMULATION - MODELS ﬂ(IT

chnology

Distribution system
Grid of KIT Campus Nord near Karlsruhe

Controlled voltage source

i * 6 20kV-rings with 43 buses

« 4 generators with governor and AVR

« 87 transformers

« 86 dynamic loads, mostly on 400V buses

« (ables as Pl-sections due to short length

« Loads and generators can be fed with real

historical measurements
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DISTRIBUTED REAL-TIME SIMULATION - MODELS

‘ Transmission system
Section of the IEEE Nordic Testsystem

(in future to be replaced by a network model of Northern Germany)

L «  Generators with Governor & AVR

i - = * Transformers: Step-down with OLTC, step-up &

o1 1013 L | ot L
R o o’
= =

transmission transformer with fixed Tap Changer

=% - \Controlled

<L) current | ¢ Bergeron Line-model
LR source .

TeER gt Dynamic loads

| ° LC - Compensatlon
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DISTRIBUTED REAL-TIME SIMULATION - MODELS

Coupled power

o ~ systems —~— S
‘ Transmission system Distribution system ‘

Section of the IEEE Nordic Testsystem Grid of KIT Campus Nord near Karlsruhe
(in future to be replaced by a network model of Northern Germany) Controlled voltage source

e E e
A ou
[ I =
[ ——2[=|%—Controlled
= -— # L1 current
7\_\_8_\; -::?C:n;u 7§ § d
o source
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DISTRIBUTED REAL-TIME SIMULATION - RESULTS

Validation:
 Different dynamic simulation cases will be presented
 Validation is carried out without HIL and PHIL

Case 1: Load increase from 1 MW to 4 MW in the distribution system (K)
« Latency in two-digit ms range due to transmission of the signals via the network layer,
signals processing in switches and routers
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DISTRIBUTED REAL-TIME SIMULATION - RESULTS

Short-circuit in distribution system (K)

Case 2: Short-circuit in distribution system:_ % «| = VYV
« Fault Location at the coupling node (K) E o —umy £ o — e
« Faultimpedance of 0,1 ohm S 10 e _
Case 3: Short-circuit in transmission system: _ =, .
 Fault Location at the coupling node (E) ‘ — A
« Faultimpedance of 0 ohm E — ez | 5
Short-circuit in transmission system (E) S o “u Tt
: - 2 b niwami | Conclusions:
‘ £ o —uml 2 e il — =a5el |« Distributed Real-Time simulation is working
5 02 % S stable even for high dynamics close to the
co-simulation connection point.
f 02 — 3 mmsw « Latency has impact on travelling waves, as
‘ U \ e g ° me s tI.1e moment of short-circuit occurrence
: Zz = wwwwwu] differs for side (E) and (K).
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DISTRIByTED REAL-TIME SIMULATION - RESULTS

ey Short-Circuit at K (KIT)
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SUMMARY & OUTLOOK

Establishment of a distributed Real-Time Simulation

Wide area systems can be modeled on different Real-Time Simulators

Latencies via network layer and signals processing in switches and routers

Outlook:

o Additional connection of a third partner to the transmission grid

o Different distributed hardware can be connected to the simulation with Power Hardware-in-
the-Loop and Control Hardware-in-the-Loop tests

o Real-Time Scenario: Hybrid AC/DC Test Network

o Real-Time Scenario: Multi-Modal Gas/Power Grid
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REAL-TIME SCENARIO: HYBRID AC/DC TEST NETWORK

S &® E-mobility
N 60 charging

Multi-purpose

hybrid AC/DC test network Station Sty R Gas grid
N SIIE | & me
Scenario objectives: , @B +55 kVpc N
« Interaction of local controllers - - E N—® 400V (LV)
»  Grid-forming control I I £ 012 kVoc 2 & RT-Physica)
. Islanding ! ' * BT €7 E @. v |
« Evaluation of system stability ! : 7 10kV (MV) g : o] |
» Selectivity ! ! HVDC NN I
Picture shows principle approach, ! : : 4““*() v AC}‘\
final implementation can differ | | ? ® PV-plant / wind-farm
; :_ .. ________ =1 E E Qé_—ziézgg
. 400 kV transmission . (LV-DC) &
| Systemon primary | PV—p/ant

simulator

Source: Maschinenfabrik Reinhausen GmbH, FAU
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REAL-TIME SCENARIO: MULTI-MODAL GAS/POWER GRID

Simulative integration of a 'Regenerative
Energies Hub' into a trans-regional grid

Scenario objectives:

- Efficient use of the gas grid and distributed storage Yo ce 20/110KkV

capacities (e-mobility) to support the power grid o'. . ECP |
« Conditions for profitable operation of RE-Hubs Vi, + % o |

o.... ~ [@‘/\ }?E\S | ,

RE-Hub (model or real equipment): ’M ’H\
- Storage: gas storage (H,, CH, and CO,), batteries e'0e® s Energy Hub Gas
« Gas-to-Power/Power-to-Gas conversion: electrolyzers, 2200 i - - CH,

biomass fermentation, combined heat and power gas il *° (7)) e |

motors, synthetic methanization | ] =l o e
* Interfaces to 20kV/110kV and trans-regional gas grid ‘. ,, | emtmm e G -A
» Regional outlets to e-mobility charging infrastructure, 2 ’ S

ind ustry and heat processing ECP - Electrical Connection Point, BGP - Biogas Plant, CHP - Combined Heat

and Power
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