Real-Time Simulation: A Game-Changer for De-Risking Grid Modernization Technologies

POWER IN DISCOVERY

EXPO: APRIL 26-28, 2022 | CONFERENCE: APRIL 25-28, 2022 NEW ORLEANS | ERNEST N. MORIAL CONVENTION CENTER

E INNOVATION STAGE

Motivation and Background *Why?*

HIL Testing Equipment Hardware and software components

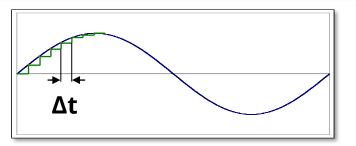
Applications Flavours of real-time simulation

Case Studies *Real-world utility examples*

How do we validate that controls and protection will operate as expected (and to grid code / standards) before they are installed?

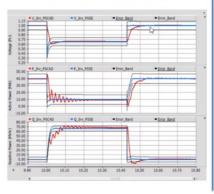
How confident are we that multiple devices in the grid are interoperable through a variety of operating scenarios?

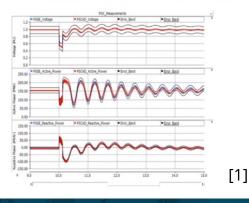
How wide a range of system conditions are we modelling and testing for?


How detailed is our system representation when we model and test?

Types of Power System Simulation

Type of Simulation	Load Flow	Transient Stability Analysis (TSA)	Electromagnetic Transient (EMT)
Typical timestep	Single solution	~ 8 ms	~ 1 - 50 µs
Output	Magnitude and angle	Magnitude and angle	Instantaneous values
Frequency range	Nominal frequency	Nominal and off- nominal frequency	0 – 3 kHz (<15 kHz)


Dommel algorithm of nodal analysis used in RTDS, PSCAD, EMTP, etc.


Benefits of EMT Simulation

- Allows for a greater depth of analysis than phasor domain (RMS) representations
- RMS models lack the ability to capture fast network dynamics during transient conditions and may provide optimistic results
- Important for modern systems with many power electronic converters (more likely to predict control instability)

Wind farm fault ride through

Synchronous generator fault ride through

Benefits of EMT Simulation

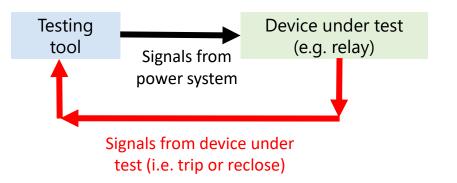
Cause of Tripping	Can Be Accurately Modeled in Positive Sequence Simulations?	Can Be Accurately Modeled in EMT Simulations?
Erroneous frequency calculation	No	Yes
Instantaneous* ac overvoltage	No	Yes
PLL loss of synchronism	No	Yes
Phase jump tripping	Yes	Yes
DC reverse current	No	Yes
DC low voltage	No	Yes
AC overcurrent	No	Yes
instantaneous* ac overvoltage—feeder protection	No	Yes
Measured underfrequency—feeder protection	No	No**

 NERC study – "strong need" for EMT modelling in support of renewable energy integration

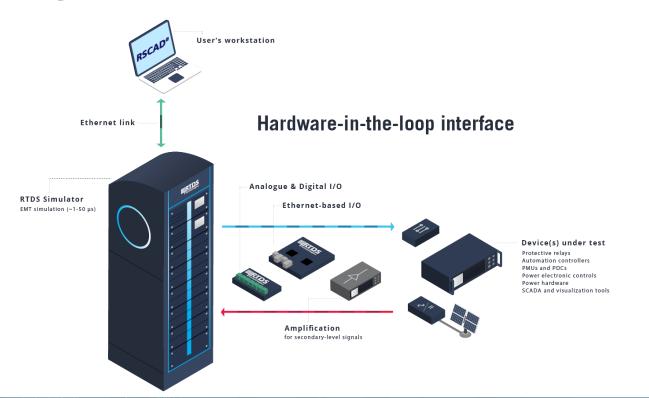
[2]

 Majority of tripping events analyzed could not be accurately simulated using positive sequence only studies

What is "real time"?

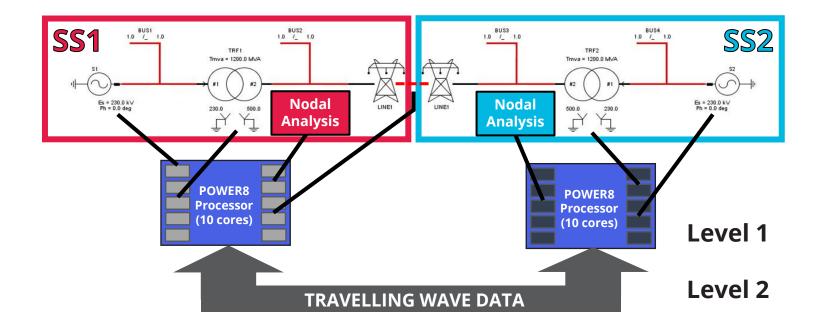

- Real time it takes for an event to occur = Simulation time of an event.
 - E.g. 3 cycle fault for 60Hz system = 0.05 seconds. RTDS simulates this fault in real time i.e. 0.05 seconds.
 - Non-real-time simulations will simulate events faster or slower than real time depending on case complexity.
- Values updated each timestep.
 - All calculations and servicing I/O completed within a timestep (~1-50 microseconds).
 - Every timestep has same duration and is completed in real time.

Advantages of closed-loop testing

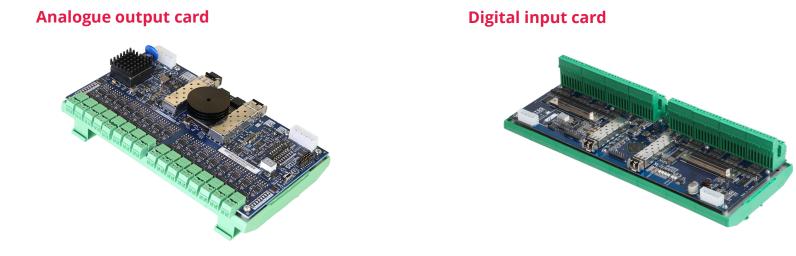

- Real-time simulation enables closed-loop testing
 - Test continues after the action of the protection/control device, showing dynamic response of the system
 - Test multiple devices (and entire schemes) at once
 - Much more detailed system representation than open-loop test systems (i.e. relay test sets) provide

HIL testing with a real-time simulator

Parallel processing hardware


- Multi-core processor allows for simulation to be scaled via core licensing
- Platform optimized for hard realtime simulation
- No operating system used by the processor while simulation running
 - bare metal operation

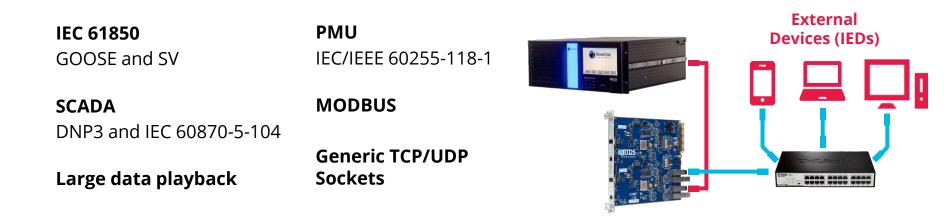
Parallel processing on two levels



I/O Devices for HIL Testing

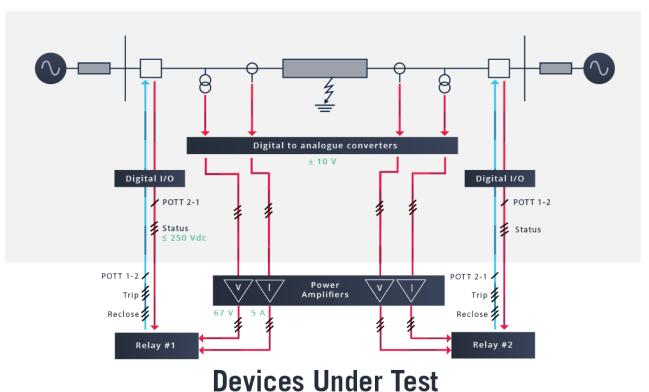
Analogue and digital input and output

- 16-bit analogue I/O with a range of +/- 10 Volts
- 64 channels with an input resolution of up to 10 ns



I/O devices for HIL Testing

Interfacing via communication protocols


- Communication with external devices over Ethernet
- Card has two "modules" and can have two network protocols operating simultaneously

RTDS Simulator

Real-time simulation software

- User-friendly GUI that allows user to develop their simulation case, dynamically interact with the simulation, and collect data
- Tests can be automated thousands of scenarios run without user interaction
- Software is highly flexible same all-in-one package can be used for wide variety of applications, i.e. power electronics, microgrids, protection, HVDC, etc.

Modelling library

Sync Machine Sync Machine (Embedded)

Sync Machine Sync Machine w/ internal fault w/ internal fault v3 v2

3P Induction

Machine w/

winding access

DC Machine

Multi-mass

Multi-mass w/ clutch

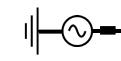
Multi-Star

Machine

Sync Machine Sync Machine Multi-Phase

Sync Machine w/ Internal Flts

Sync Machine 1P Induction Permanent Magnet



Induction Machine

Synchronous Machine

Instrument

Transformers

Valve Group and

SVC Models

RLC Components

~~~~



**Transformer Models** 



Machine **Models** 





**Series Compensation** Models



**Transmission Line** and Cable Models





## **Applications**

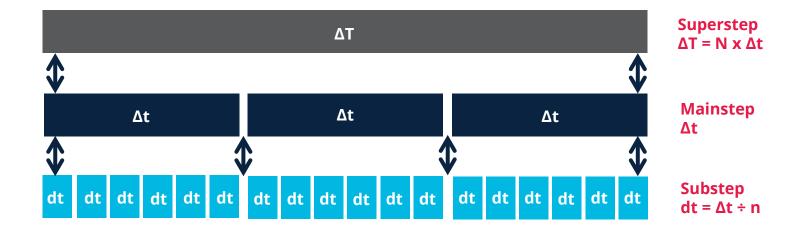
#### Distribution

- Microgrid testing.
- Renewables/DERs.
- Distribution automation.
- Inverter testing.
  Smart Grid
- WAMPAC testing.
- PMU studies.
- Cyber security.

#### **Power Electronics**

- HVDC and FACTS.
- Energy conversion.
- Drives.

#### Protection

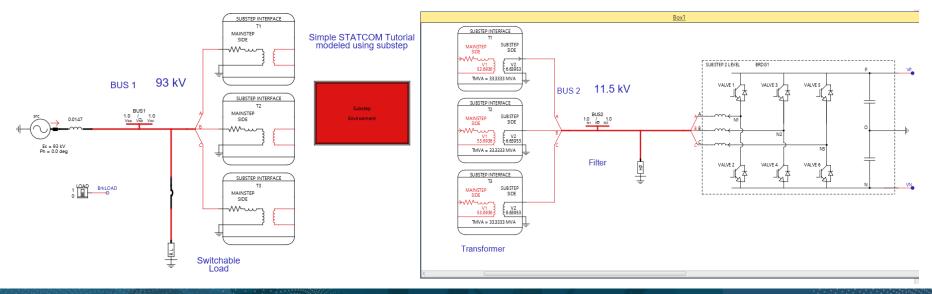

- Digital substations.
- Travelling wave testing.







#### **Power electronics simulation**

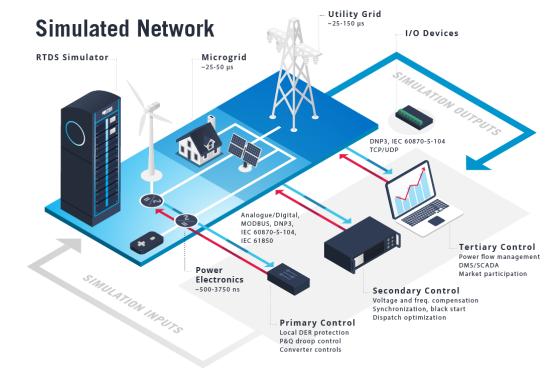







#### **Power electronics simulation**

- Dedicated core for smaller timestep ("Substep") networks running in the ~1-10 µs range
- Power electronics and power systems circuits exchange data every larger timestep
- Detailed switching representation >150 kHz



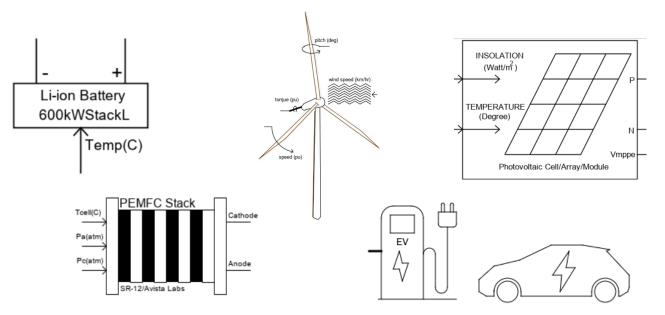





## Microgrids

- Test multi-level microgrid control
- Connect local DER protection/control, secondary-level voltage and frequency control, and higher-level power flow control to the simulated environment
- Test functional requirements and dynamic performance of microgrid controllers




**Devices Under Test** 

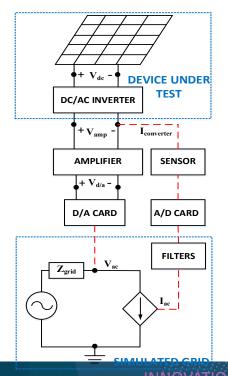




#### **Renewable energy**

• Test protection, control, and small or large-scale integration of battery energy storage systems, solar PV, wind, hydrogen, electric vehicles, etc.



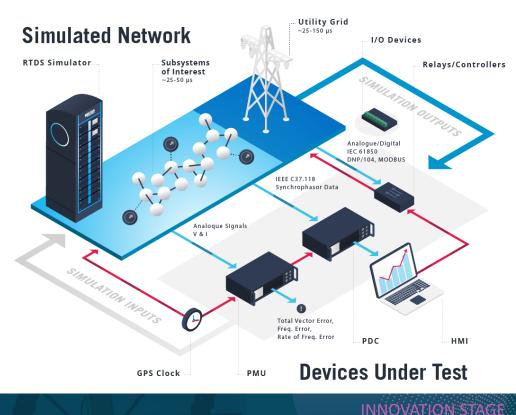





## Inverter testing via power hardware in the loop

- Simulated environment exchanges power with renewable energy hardware, motors, batteries, loads, etc.
- Interface via four-quadrant amplifier and traditional I/O or Aurora communication.

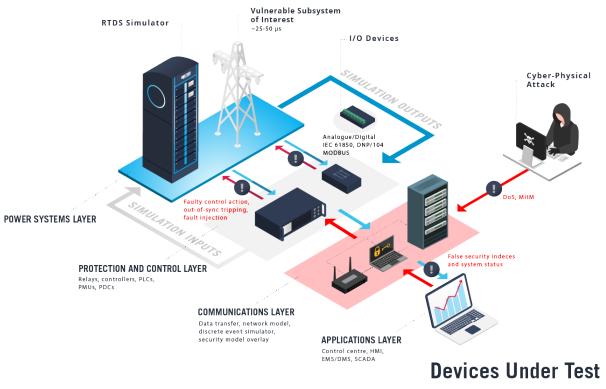









## Wide area protection and control

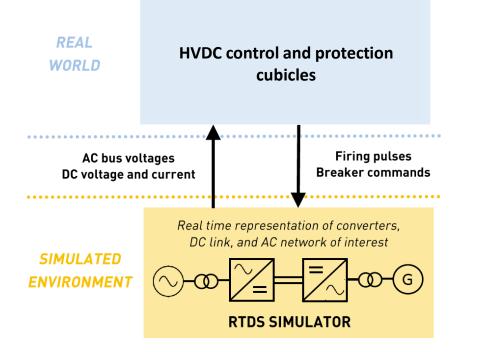

- Synchronize the simulation timestep to external time reference
- PMU performance testing as per IEEE ICAP TSS specifications
- PDC testing for entire wide area schemes





## Cybersecurity

#### **Simulated Network**








#### **HVDC - Factory Acceptance Testing**

- Vendor builds up a model of their HVDC/FACTS scheme and equivalent of the network where the scheme will be installed
- Tests include standard operating scenarios (start up, shut down, etc.) and performance tests for various contingency scenarios
- Simulations run for hours or days for comprehensive testing







### **HVDC – Replica Simulators for Utilities**

- Assist during commissioning Accelerate project schedule and de-risk installation (prevent misoperation / negative interaction)
- Investigate proposed network changes, control modifications
- Train personnel on theory and operation

Furnas (Brazil) TNB (Malaysia) CSG (China) SEPC (China) ESKOM (South Africa) SEC (Saudi Arabia) Power Grid (India) Powerlink (Australia) REE (Spain) Equinor (Norway) DEWA (UAE) ONS (Brazil) NamPower (Namibia) RTE (France) BPA (USA) **Manitoba Hydro (Canada)** Transpower (New Zealand) SSE (UK) Zhejiang EPRI (China) Amprion (Germany)





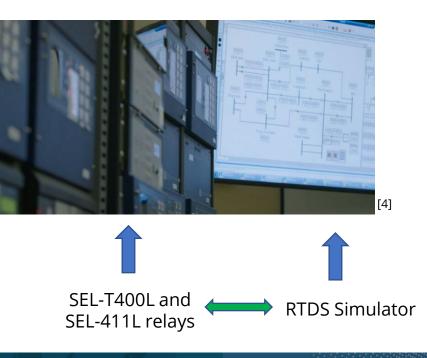


## **Travelling Wave Protection Testing**

#### **Public Service Company of New Mexico**

- Divided 345 kV series compensated line into 2 segments at a new switching station to accommodate an interconnector
- Would result in ~150% overcompensation of first section of line
- Involved SEL Engineering Services to assist in developing adequate protection and coordination








#### **Travelling Wave Protection Testing**



- Original plan to use current differential for main protection and T400L for monitoring
- Factory Acceptance Testing at SEL with the RTDS Simulator







### **Travelling Wave Protection Testing**

- HIL testing revealed 600 microsecond operation time for a midline single-phase fault
- Traveling wave fault locator reported the fault location to within 0.02 miles on a 33.1 mile line
- Gave PNM the confidence to deploy T400Ls with direct tripping – *first utility in the <u>world</u> to use traveling-wave based protection with live tripping to CBs*



T400L relays installed in the substation [4]





### **Impacts of Renewable Energy on Protection**

#### **Quanta Technology**

- Testing protection on a 345 kV series-compensated line tied to a Type IV wind farm facility
- Impacts of inverter-based resources on line protection:
  - Overcurrent Not enough current; difficult to provide sensitivity and selectivity
  - Directional Suppressed negative sequence current; difficult to detect asymmetrical faults
  - Distance coordination Trip time and zone coordination is impacted







#### **Impacts of Renewable Energy on Protection**



- Modelled line, wind farm, and converter controller in RSCAD
- Tested SEL 411L and 311L relays elements 87L (differential) as primary protection, 21 (distance) as back-up





### **Impacts of Renewable Energy on Protection**

- Varied fault type, location on line, inception angle, and resistance
- 87L element passed all test cases
- 21 element did not pass the tests
  - No negative sequence current injection from IBR
  - Low fault current magnitude
  - Loop selection error in relay
- Worked with manufacturer to improve relay performance further work required to achieve secure operation through all test cases

#### COMTRADE recording of A-G fault







[5]

## **ComEd's landmark microgrid project: Bronzeville**

- ComEd, an Exelon company, serves over 4 million customers in northern Illinois (incl. Chicago)
- Bronzeville Community Microgrid (BCM) enables a green, resilient, sustainable neighborhood for consumers



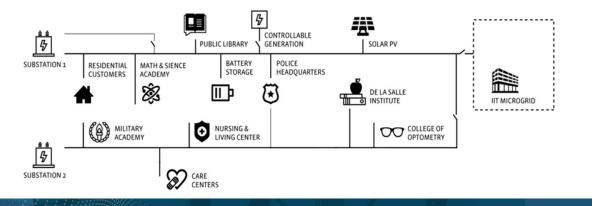
Green- Dearborn Homes

Blue - IIT

**Red-BCM Footprint** 

Yellow – Phase I Solar Boundary






## **Bronzeville Community Microgrid**

- 7 MW aggregate load, serving approximately 1,000 residences, businesses and public institutions
- Powered by DERs –

750 kW solar PV (owned by Chicago Housing Authority) 500 kW/2MWh battery energy storage (owned by ComEd), 4.8 MW controllable generation (owned by Enchanted Rock)

- Microgrid master controller is being tested in the ComEd Grid Integration and Technology Lab
- Can cluster with IIT Campus Microgrid one of the most advanced urban microgrid clusters in the USA







#### **ComEd Grid Integration and Technology (GrIT) Lab RT-HIL Facility**



#### Commissioned in 2018 | Located at Maywood, Illinois

#### Major project areas:

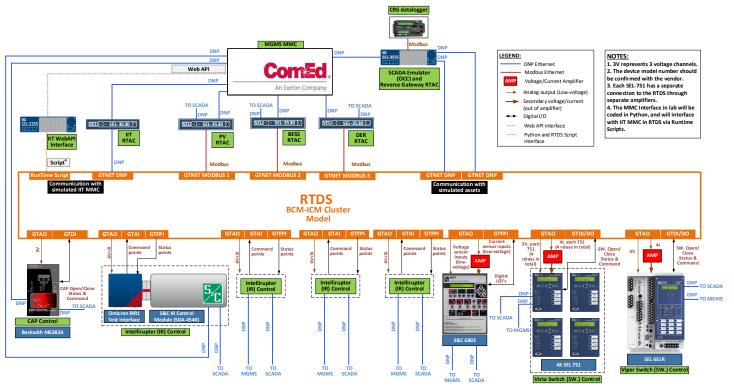
- HIL testing and validation of emerging technologies such as microgrid controller, DER management system, distribution state estimation
- Protection and relay testing
- Cybersecurity projects



Several Microgrid projects in Collaboration with Department of Energy (DOE), National Science Foundation (NSF), Universities, and National Laboratories

#### RTDS is the heart of RT-HIL test setup



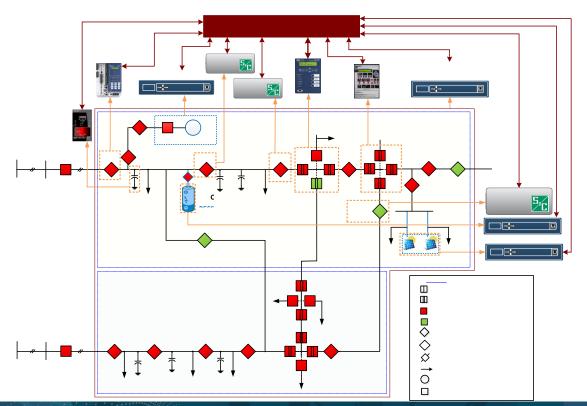

#### Microgrid Management System (MGMS) Testing

- MGMS is a microgrid master controller (MMC) that monitors, manages, and operates the microgrid assets.
- Key functionalities
  - Microgrid Optimization Module: Decides the optimal operating plan of all microgrid resource for next 24 hours.
  - **Peak Shaving:** Use dispatchable resources in the microgrid to limit power import from the main grid.
  - □ Solar Battery Coordination (SBC): Utilize battery energy storage system (BESS) to compensate intermittent PV generation. PV and BESS together act as a dispatchable resource.
  - **Planned Islanding:** Disconnect the microgrid from the utility supply.
  - Grid Reconnection: Synchronization and connection of an islanded microgrid to the main grid.
  - Black-start and Load Restoration: After a system outage, MGMS detects the loss of good voltage at point of interconnection and initiates a black-start and restoration of the microgrid by utilizing the local DERs.





#### MGMS HIL Test Setup: Components and Connections



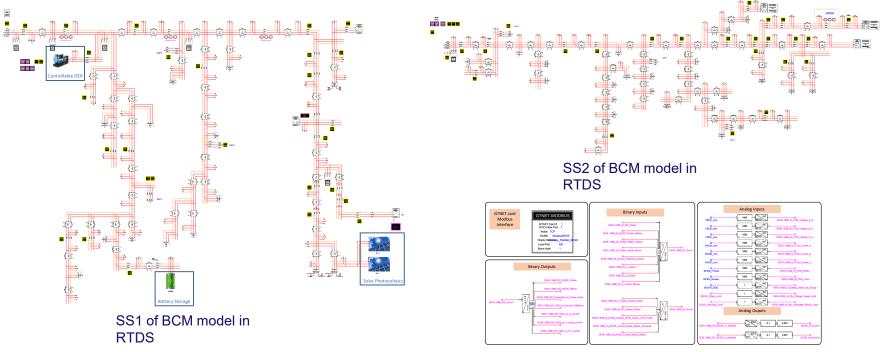

**POWER IN CONNECTIONS** 

Source: ComEd [6]



#### MGMS HIL Test Setup: Detailed Diagram




Source: ComEd [6]





#### **Snapshot of BCM Model in RTDS**

Source: ComEd [6]



Modbus TCP interface in RTDS for

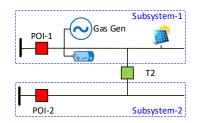


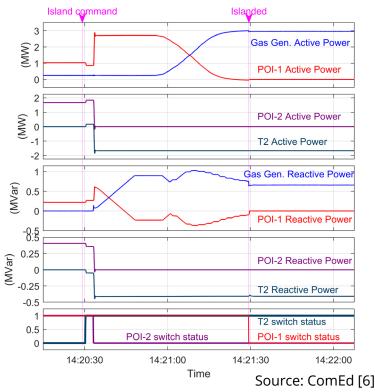


#### **CHIL Testbed in ComEd's GrIT lab**





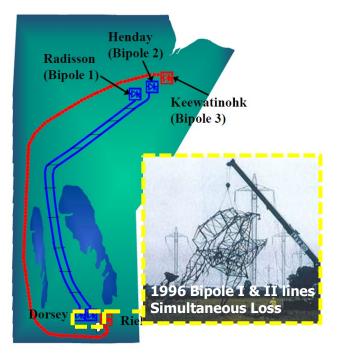




### **MGMS Functionality Testing Result**

#### **Planned Full Islanding**

Island the entire BCM from the main grid.

- **Step 1:** Load transfer from lower feeder to upper feeder (Close Tie switch T2 and Open POI switch POI-2)
- Step 2: MGMS takes control over the Gas Generator. Turn it ON, if it was offline.
- **Step 3:** Ramp active and reactive powers of gas generator, to pick of load of BCM.
- **Step 4:** Open POI-1 when power exchange at VPL6 is close to zero to island BCM.
- **Step 5:** Change mode of operation of 'Gas generator' to 'grid-forming mode'.






INNOVATION STAGE



# Manitoba Hydro: An innovative utility facing operational challenges



- Three LCC-based HVDC bipoles ranging from ~900-1300 km
- Multi-egress and multi-infeed three rectifiers in electrical vicinity, three inverters feeding into tightly-coupled AC system with low short circuit capacity and system inertia
- High Multi-Infeed Interaction Faction (MIIF)
- Judicious coordination of HVDC recovery strategy vital potential adverse interactions among bipoles
- Transient stability & EMT study tools valuable but testing of physical controls irreplaceable & imperative

Source: Manitoba Hydro [7]

Manitoba Hvdro





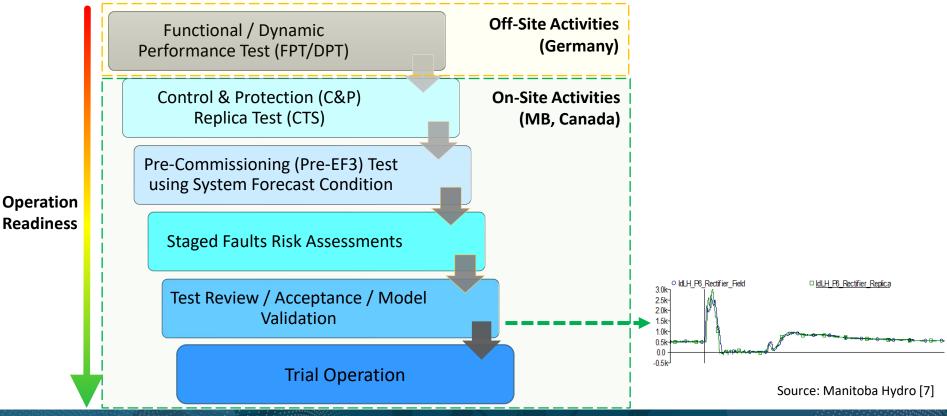
#### Manitoba Hydro Real-time Simulation Centre

MHRSC Home Base

RTDS Fleet (2 Fully Licensed NovaCor & 14 PB5 Racks)



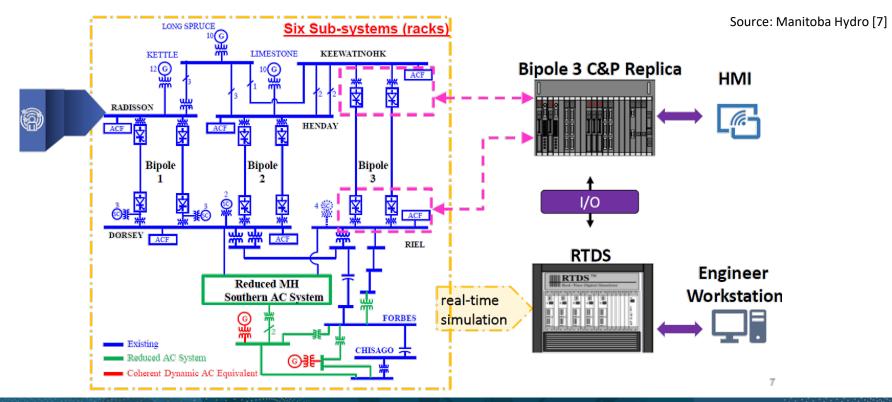
Source: Manitoba Hydro [7]


#### HVDC Control & Protection (C&P) & Auxiliary Equipment Replicas








### **HVDC Testing and Commissioning Process**







#### Large-Scale Multi-Infeed HVDC HIL Simulation







### The value of HIL testing for a wide range of projects

- Bipole 3 in Multi-Infeed HVDC
  - De-risked onsite commissioning of Bipole 3
  - Significant schedule reduction (~3 months) and outage cost savings
  - Fast and secure integration



- World's 1st HVDC controlled switching
  - De-risked HVDC converter transformer emerging technology
  - Substantial life-cycle cost reduction
  - Over \$5 million saved
  - CEA Centre of Excellence Award for Innovation
- 500 kV Fixed Series Compensation Inter-Tie
  - De-risked crucial SPTR
  - Fast, reliable, secure, safe restoration of market access
- Manitoba-Minnesota 500 kV Inter-Tie Protection
  - De-risked complex protection schemes
  - Secured "buy-ins" and strengthened reputation





### Large-scale simulation: how big can we go?

#### NARI/SGEPRI (China)

- Can simulate >3600 threephase buses and 20 HVDC links
- Validate wide area protection and control schemes, AC and multiple HVDC coordination, system stability control







## Thank you! kati@rtds.com – Booth 5928

#### **Sources**

[1] B. Badrzadeh, Z. Emin, February 2020. The need for enhanced power system modelling techniques and simulation tools. CIGRE ELECTRA No. 308.

[2] PSCAD. Webinar - General Introduction to Electromagnetic Transient Simulations. June, 2020. Presented by Dharshana Muthumuni.

[3] North American Electric Reliability Corporation (NERC). Odessa Solar, 2021.

[4] SEL, PNM are first to apply time-domain technology for protection of high-voltage transmission lines. https://selinc.com/company/news/124184/

[5] Quanta Technology. Investigating Inverter-Based Resources Impacts on the Transmission Line Protection via Hardware-in-the-loop Simulation.

RTDS Technologies' User Spotlight Series 2.0, November 2021.

[6] Information and photos courtesy of ComEd, 2022.

[7] De-Risk Manitoba Hydro Power Grid Transformation, Chun Fang, RTDS Technologies User Spotlight Series, 2020.

Nelson River Bipole-III HVDC: F.A.T. and On-site Commissioning of Control & Protection Replica HIL Testing with RTDS, Chun Fang, RTDS Technologies Application and Technology Conference, 2019. RTDS Testing of a Controlled Switching Device Used for

Transformer Energization, Waruna Chandrasena, Chun Fang, Nandaka Jayasekara, Pei Wang, and David Jacobson, CIGRE Canada Conference, 2015.



#### **POWER IN** DISCOVERY