WEBINAR AND DEMO: Real-time Simulation of Aircraft Electrical Systems with the RTDS Simulator

R T D S . C O M

AGENDA

- Intro to real-time simulation for aircraft electrical systems
- Presentation on AES modelling system characteristics, technical considerations, modelling library
- RSCAD screenshare demonstration
- Q&A

About RTDS Technologies

- Headquarters in Winnipeg, Canada
- Pioneered real-time power system simulation in the 1980s
- The RTDS Simulator is the industry standard for real-time simulation and closed-loop testing, used by utilities, manufacturers, research and educational institutions, and consultants worldwide
- Learn more at www.rtds.com or the large library of videos on the RTDS Technologies YouTube channel

More Electric Aircraft (MEA)

Figure 1- Increasing onboard electrical equipment demand in commercial aviation.

Source: CleanTechnica via United Technologies

- MEAs feature bleedless engines, specialized design for generation and distribution systems, and more electric loads (braking, A/C, anti-icing)
- Power electronics are a key enabling technology for MEA
- Reducing risk and anticipating vulnerabilities (power quality issues, control misoperation) before deployment is critical

EMT Simulation for Aircraft Electrical Systems

- Allows for a greater depth of analysis than phasor domain (RMS) representations
- Varying timesteps allow for representation of faster and slower dynamics throughout the AES
- Detailed power electronics models are key representation of harmonics and switching transients at high frequencies, potential instabilities in complex fast-acting controls

20.00

Synchronous generator fault ride through

HIL Testing for Aircraft Electrical Systems

User's workstation • Real-time simulators allow for hardware-in-the-loop testing of control and protection equipment Hardware-in-the-loop interface **Ethernet link** • Connect AES controls to the simulated network in a closed loop • APU control Analogue & Digital I/O **RTDS Simulator** • ECS control Ethernet-based I/O EMT simulation $(-1-50$ us) Engine control Device(s) under test Protective relays Automation controllers • Options for analogue, digital, and PMUs and PDCs Power electronic controls Power hardware communication protocol-based I/OSCADA and visualization tools Amplification for secondary-level signals

Modelling Library

- Flexible environment for configuring AES model – no limitation on architecture
- Sherry's presentation will go into more detail on modelling the generators, TRUs, converters, batteries, loads, etc.

Power Electronics Modelling

- Consider the switching topology, switching characteristics of the converter, characteristic harmonics
- Allows for low level control testing (firing pulses)
- **May be modelled with resistive switching or L/C switching**
- **May or may not be decoupled/interfaced**
- **Higher computational burden**

- Replaces detailed models with controlled voltage and current sources
- Modulation waveforms from the same current controller can be used to strategically control the sources such as to reproduce an averaged version of the high frequency switching transients
- **May or may not be decoupled/interfaced**
- **Lower computational burden**

Universal Converter Model (UCM)

Motivation

- Demand for converter modelling and simulation with higher switching frequency (>30 kHz)
- Research found that average modelling may be used to achieve high resolution of firing
- Other average model implementation is decoupled on the DC bus can cause instability

Solution: Universal Converter Model

- Available for 2-level, NPC (ANPC), T-type, boost and buck
- Multiple input (control) types
- Can be used in Mainstep OR Substep
- Improving performance and reducing computational burden
- **No decoupling / interface lines** *2-level UCM*

UCM

Substep Environment (<10 us)

- Full Firing Pulse Input
	- Similar to existing resistive-switching Substep models
- Modulation Wave Input
	- Similar to average model, but with improved performance
	- Proper transition between blocked and de-blocked states
- Improved Firing Input
	- Accurately represents converter performance with PWM firing **>150 kHz**

Mainstep Environment (30-50 us)

- Modulation Wave Input
- Improved Firing Input
	- Accurately represents converter performance in the **3 kHz range**
	- 10 load units per converter

UCM Performance

50 us timestep -Modulation waveform input

Thank you!

R T D S . C O M

Aircraft Electrical System Modelling in RTDS

R T D S . C O M

CONTENT

- **Introduction**
- **AES Modelling in RTDS**
- **Simulation Demonstration**
- **Conclusion and Future Development**

R T D S . C O M

Introduction

- **Simulation Capabilities**
	- **IBM's state of the art POWER8TM processor**
	- **10 powerful cores running at 3.5 GHz**
- **Precise**
	- **Higher precision simulations with timesteps reduced by up to 50%**
- **Scalable**
	- **Scalable access through the licensing of 1~10 cores per chassis**
	- **Overall system expansion and full connectivity up to 144 chassis**
- **RTDS** provides three simulation modes to set different simulation timesteps.

RTDS provides various models for converters, transformers, machines, cables etc. to meet different application needs.

Introduction

*Key components***: TRU (ATRU), AC-DC converters, DC-AC converters, DC-DC converters, transformers, machines, batteries, etc.**

[1] Frede Blaabjerg, "Control of Power Electronic Converters and Systems", UK, Academic Press, 2018.

Various Converter Types in RTDS

Universal Converter Models (UCMs)

- **Various topologies, such as Buck, Boost, 2L-VSC, 3L-NPC, 3L-T-type, 3L Flying Capacitor, etc.**
- **Resistive switching models**
- **Various control input, such as improved firing pulse, modulation waveform / duty cycle**
- **Switching frequency up to 221.5 kHz for 2** µ**s Sub-timestep**

Various Machine Models

- **Various machine types, such as DC machine, induction machine, synchronous machine, PMSM, etc.**
- **Various synchronous machines including transformer or internal faults**
- **Single-phase and multi-phase machines**

Various Transformer Models

- **Various transformer models, such as YYD type, single-phase, three-phase, multi-phase, etc.**
- **Some models include the saturation settings**
- **Some models consider the internal fault**

 $#2$ 230. $#3$

230.0

Various Cable Models

- **Various cable models, including PI section and Tline, for example,**
	- o **PI section, double PI section, and frequency dependent PI section**
	- o **Bergeron Tline, and frequency dependent Tline**

Battery Models

- **Li-ion battery is modeled in RTDS for two types:**
	- **(i) 'Min/Rincon-Mora' model: considering state of charge (SOC) influence on the parameters in the equivalent circuit;**
	- **(ii) 'Huria/Ceraolo/Gazzarri/Jackey' model: taking account of the temperature effect on the model dynamics.**

Equivalent Circuit used in the Battery Model

л **AES Modelling in RTDS**

R T D S . C O M

AES Example Modelled in RTDS

- **Split the large system to several parts and develop the parts step by step**
- **Combine the parts together to build a large case**

Taking the following architecture as example

Note RTDS can develop various architectures of aircraft electrical systems, not limited to this example one.

- **Three buses:** 115V/400Hz AC bus, 270V DC bus and 28V DC bus.
- **SG with VSCF**: synchronous generator with variable-speed constant-frequency to generate the 115V AC bus fixed at 400 Hz
- **12-Pulse TRU:** to convert 115V AC bus to 270V DC bus
- **DAB:** dual-active bridge converter to converter 270V DC bus to 28V DC bus
- **Loads:** linear (e.g., resistive loads) and nonlinear loads (e.g., motor loads)
- **Battery:** 270V battery and 28V battery

28V DC

Converter

SG with VSCF Operation

SG Parameters:

- Rated RMS line-to-line voltage: 200V
- **Base angular frequency: 400Hz**
- Rated MVA of the machine: 70kVA **Controller:**
- **Adjusts the field voltage for SG to** control the dc-link voltage

2L-VSI Parameters:

- **Switching frequency: 15kHz**
- DC-link voltage: 320V
- AC-side filter (RLC): 28uH, 50uF and 0.25Ω

Controller:

• Controls the inverter's output voltage magnitude

DC Link Converter 3-Phase **DC/AC 115 VAC** 400 Hz Varible Generator Speed Input Shaft CF/VSCF (DC Link)

SG with VSCF Operation

Add resistive load (0.571 Ω**) to test the SG + 2L-VSC Operation**

- The field voltage for SG is adjusted to regulate the dc-link voltage to 320V.
- The output ac voltage magnitude is controlled to be 115V (phase) or 200V (LL) at 400 Hz.

12-Pulse TRU Operation

Transformer (Y-Y-∆**) Parameters:**

- Rated RMS line-to-line voltage Y: Y : Δ
	- $= 200V : 210V : 210V$
- Base angular frequency: 400Hz
- Rated MVA of 3-phase transformer: 50 kVA
- **Transformer leakage: 0.168 puller**

Converter Parameters:

- DC bus capacitor: 3000uF
- **Firing pulses for 2L-VSC are zero to operate** as diode rectifiers

115V/400Hz AC Bus → TRU (Output in Parallel) → 270V DC Bus

12-Pulse TRU Operation Add resistive load (1.458 Ω) to test the TRU Operation

With proper main circuit parameter design, the output voltage of TRU stays at 270V in steady state.

DAB Operation

DAB provides galvanic isolation, high-power density, fast power reversal, and buck-boost operation with possibility of high step ratio. It is commonly used in aircraft electrical system for DC-DC conversion.

DAB Parameters:

- Rated transformer's wing voltages = 270V : 28V
- Base angular frequency: 10kHz
- Rated MVA of transformer: 14 kVA
- Transformer leakage: 0. 294 pu
- 28V DC bus capacitor: 12000uF
- Converter switching frequency: 10kHz

Controller:

 Controls the output voltage by adjusting the phase shift between the left and right-side square waves

 With improved firing pulse for UCMs, DAB operation can be precisely controlled by the phase shift between the left- and right-side converter's firing pulses.

PMSM Load Operation

Diode Rectifier Parameters:

- Rectifier inductance: 546.8uH
- DC bus voltage: 260V
- DC bus capacitance: 3000uF
- DC chopper resistor: 8Ω

2L-VSI Parameters:

Switching frequency: 4kHz

Controller:

- Controls PMSM speed to generate iq*
- Controls $id^* = 0$ to minimize the line current

PMSM Parameters:

- Rated stator voltage: 150V
- **Base frequency: 60Hz**
- Rated MVA of machine: 2kVA
- Machine inertial constant (H): 0.5MWs/MVA
- **Mode: speed mode**

PMSM Load Operation

PMSM starts up smoothly and the controller can track the speed reference very well.

Induction Machine Load

Induction Machine Parameters:

- Rated LL RMS stator voltage: 200V
- **Base frequency: 400Hz**
- Rated MVA of machine: 12kVA
- **Turns ratio (roto to stator) 2.6377**
- **Machine inertial constant (H): 0.658MWs/MVA**

Induction Machine Load

270V DC Bus Load

- Resistive load: on-board lamp
- **Nonlinear load: battery**

In RTDS, 270V DC bus load

36kW resistive load: 2.057Ω

270V battery:

- 60 cells in series in a stack
- 20 stacks in parallel
- 0.85AH
- \blacksquare Initial SOC = 100%

Synchronous Generator

115V AC BUS

@400Hz

28V DC Bus Load

- **Resistive load**
- **Nonlinear load: battery, dc motor driving a** fuel pump and so on

In RTDS, 28V DC bus load

- **14kW resistive load: 0.056** Ω
- **28V battery:**
	- 7 cells in series in a stack
	- **10 stacks in parallel**
	- 0.85AH
	- \blacksquare Initial SOC = 100%

560W DC Motor

- Rated speed: 2000rpm
- Rated armature voltage: 28V
- Rated armature current: 20A
- Rated field current: 0.37A
- Motor inertial constant (H): 0.01MWs/MVA

ш **Simulation Demonstration**

R T D S . C O M

AES Model in RTDS

- \Box SG is online when its speed is in the range of 10000~20000 rpm.
- \Box If SG is offline, battery will be connected to power the load.
- □ Battery's initial SOC is 100%. When the battery's SOC decreases to 60%, the SG will be online (if applicable) to charge the battery

System Developed in RTDS

@400Hz

LOAD

Technologies

Draft of AES in RTDS

- \Box Sub-timestep: 50us/6 = 8.333 us
	- **8 UCMs**
	- 5 three-phase breakers
	- 7 single-phase breakers
	- 7 single-phase transformers
	- 1 PMSM, 1 induction machine, and 1 DC motor

Switching frequency for power electronic converters:

- O DAB: 10 kHz
- 2L-VSI for SG side: 15 kHz
- o 2L-VSI for PMSM side: 4 kHz

RunTime of AES in RTDS

Simulation Results

ITechnologies

System startup to the SG speed 15000 rpm

Simulation Results Change SG speed from 15000 rpm to 19000 rpm

Simulation Results Change SG speed from 19000 rpm to 11000 rpm

ITechnologies

Simulation Results Change SG speed from 15000 rpm to 9000 rpm

SG Operation

 1.5

 $\overline{2}$

 2.5

3

 0.5

 Ω

ITechnologies

28V batteries are online to supply power to the load.

Simulation Results Change SG speed from 9000 rpm to 15000 rpm

SG Operation

 $\mathbf{1}$

 $\mathbf{0}$

Technologies

 0.5

 1.5

 $\mathbf{2}$

 $2.5 -$

 When SG speed is increased to 15000 rpm, SG is online and the 270V and 28V batteries are online to be charged.

Simulation Results Steady state operating waveforms under SG speed 15000 rpm

ITechnologies

Simulation Results Steady state operating waveforms under SG speed 15000 rpm

Technologies

m **Hardware Interface to Peripherals**

R T D S . C O M

Aurora Link

 $\sqrt{8}$

GTIO Cards

GTAI v2: 12 channels/card +/- 10V range

GTAO v2: 16 channels/card +/- 10V range

GTDO v2: 64 channels/card, +5V ~ +30V range

NO FEL

GTDI v2: 64 channels/card, +3V ~ +50V range

The Aurora protocol is a lightweight serial protocol developed by Xilinx suitable for high speed point to point communication links. This component provides a way to digitally communicate with the RTDS simulator using the Aurora Protocol.

Example for Control-Hardware-In-Loop (CHIP) Test

Conclusion and Future Development

R T D S . C O M

Conclusion

- **One example of aircraft electrical system (the architecture including 115V/400Hz AC bus, 270V DC bus and 28V DC bus) was successfully simulated with good performance.**
- **Thanks to UCMs, the simulation with high switching frequency can be done under relatively large timestep (e.g., 15 kHz with 8.333 us in this example, i.e., only 8 calculations for one switching period).**
- **RTDS provides various machine models to emulate the nonlinear motor load in aircraft electrical system.**

Future Developments

More aircraft electrical systems will be modelled in RTDS as sample cases.

R T D S . C O M

THANK YOU!

LEEP

W 副田