Abstract:
This paper proposes a Electro-Magnetic Transient (EMT) model of a 2 GW offshore network with the parallel operation of two Modular Multi-level Converter (MMC)—High Voltage Direct Current (HVDC) transmission links connecting four Offshore Wind Farms (OWFs) to two onshore systems, which represent a large scale power system. Additionally, to mitigate the challenges corresponding to voltage and frequency stability issues in large scale offshore networks, a Direct Voltage Control (DVC) strategy is implemented for the Type-4 Wind Generators (WGs), which represent the OWFs in this work. The electrical power system is developed in the power system simulation software RSCADTM, that is suitable for performing EMT based simulations. The EMT model of 2 GW offshore network with DVC in Type-4 WGs is successfully designed and it is well-coordinated between the control structures in MMCs and WGs.
Ganesh, S.; Perilla, A.; Rueda Torres, J.; Palensky, P.; Lekić, A.; van der Meijden, M. Generic EMT Model for Real-Time Simulation of Large Disturbances in 2 GW Offshore HVAC-HVDC Renewable Energy Hubs. Energies 2021, 14, 757. https://doi.org/10.3390/en14030757
KEYWORDS: large scale offshore network; direct voltage control; EMT; MMC; HVDC