Abstract:
A task for new power generation technologies, interfaced to the electrical grid by power electronic converters, is to stien the rate of change of frequency (RoCoF) at the initial few milliseconds (ms) after any variation of active power balance. This task is defined in this article as fast active power regulation (FAPR), a generic definition of the FAPR is also proposed in this study. Converters equipped with FAPR controls should be tested in laboratory conditions before employment in the actual power system. This paper presents a power hardware-in-the-loop (PHIL) based method for FAPR compliance testing of the wind turbine converter controls. The presented PHIL setup is a generic test setup for the testing of all kinds of control strategies of the grid-connected power electronic converters. Firstly, a generic PHIL testing methodology is presented. Later on, a combined droop- anFd derivative-based FAPR control has been implemented and tested on the proposed PHIL setup for FAPR compliance criteria of the wind turbine converters. The compliance criteria for the FAPR of the wind turbine converter controls have been framed based on the literature survey. Improvement in the RoCoF and and maximum underfrequency deviation (NADIR) has been observed if the wind turbine converter controls abide by the FAPR compliance criteria.
Ahmad, Z.; Torres, J.R.; Veera Kumar, N.; Rakhshani, E.; Palensky, P.; van der Meijden, M. A Power Hardware-in-the-Loop Based Method for FAPR Compliance Testing of the Wind Turbine Converters Control. Energies 2020, 13, 5203.
KEYWORDS: FAPR; power hardware-in-the-loop; inertia emulation; wind turbine; converter control