Abstract:
Meshed offshore grids (MOGs) present a viable option for a reliable bulk power transmission topology. The station-level control of MOGs requires faster dynamics along with multiple objective functions, which is realized by the model predictive control (MPC). This paper provides control, and protection design for the Modular Multilevel Converter (MMC) based multi-terminal DC (MTDC) power system using MPC. MPC is defined using a quadratic cost function, and adqz" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 16.2px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;"dqzrotating frame voltage inputs are represented using Laguerre orthonormal functions. MPC has been applied for the control of both grid forming and grid following converters in a four-terminal MTDC setup, implemented for real-time Electromagnetic Transient (EMT) simulation. By applying numerous time-domain simulations, the advantages of the MPC when dealing with AC and DC side disturbances are investigated. The investigation highlights the MPC’s inherent feature of fast response and high damping during- and post-disturbance, which is compared to the traditional PI controller performance. The analysis provides a comprehensive insight into the transient behavior of the MTDC during disturbances.
Ajay Shetgaonkar, Le Liu, Aleksandra Lekić, Marjan Popov, Peter Palensky, Model predictive control and protection of MMC-based MTDC power systems, International Journal of Electrical Power & Energy Systems, Volume 146, 2023, 108710, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2022.108710.
KEYWORDS: Model predictive control, Wind power plant, GTFPGA, MMC, MTDC, VARC DC CB, Software-in-the-loop
ACCESS FULL ARTICLE HERE