User Spotlight Series 2.0, Episode 4
Topic: HIL Testing an Adaptive Out-of-Step Protection Algorithm based on Wide-Area Measurements
Abstract: This presentation shows a robust and adaptive out-of-step (OOS) protection algorithm, using wide-area information, that can be applied on tie-lines in observable power systems. The developed algorithm is based upon the real-time computation of the system impedance and makes use of the well-known power-angle characteristic. In this way, a setting-less OOS concept in a real-time environment is developed, applicable for tie-lines in an arbitrary power system. Furthermore, the developed protection algorithm is installed on hardware and is verified by numerous tests. The testing for the developed protection algorithm is carried out by applying hardware-in-the-loop simulations in an RTDS environment. The performance of the new hardware implementation is compared to the traditional impedance-based OOS protection methods. The results of the hardware-in-the-loop simulations confirm that the proposed algorithm detects OOS conditions faster and more reliably than the traditional impedance-based solutions.
Presenter:
Marko Tealane received his B.Sc and M.Sc degrees in electrical power engineering from the Tallinn University of Technology in 2014 and 2016 respectively. From 2019 to 2020, he was an Academic Visitor at the Delft University of Technology, where he was working on out-of-step protection in the Intelligent Electrical Power Grids group. In the past, he worked as a protection engineer at the Estonian Transmission System Operator. Currently, he is on sabbatical leave, works at TU Delft and pursuing a Ph.D. degree in electrical power engineering at Tallinn University of Technology. His research focus is on Power System Protection, Power System Relaying and Wide-Area Control.
Power-HIL System for Evaluating Physical EV On-board Chargers using RTDS
Abstract: Integration of excessive electric vehicle (EV) chargers into the low voltage (LV) network may introduce new challenges. Power hardware in the loop (PHIL) simulations can be used for evaluating such systems as it provides a flexible testing platform to study the overall system as well as individual devices. The PHIL testbed consists of a PHIL-based battery emulator (BE) and a grid emulator (GE) to mimic the DC side battery energy storage system (BESS) and the AC side LV grid behavior, respectively. The Battery Emulator in this presentation considers a switch-mode power amplifier (PA). Thus, design strategies for its linear controller are also discussed in the context of cascaded DC-DC configuration. An experimental PHIL platform based on a real time simulator (RTDS has been used) has been designed and implemented. Finally, the validated PHIL test has been employed for analyzing the performance of a commercial EV charger and its interactions with a weak LV network simulated in RSCAD/EMTDC.
Presenters:
Isuru Jayawardana received his B.Sc. degree in electrical engineering and PG. diploma in energy technology from the University of Moratuwa, Sri Lanka in 2011 and 2015, respectively. He recently completed the Ph.D. degree in electrical engineering from the University of Manitoba, Winnipeg, MB, Canada.
He is currently an HVDC specialist at Hatch Ltd, Winnipeg, Canada. He joined Power delivery & Integration Team of Hatch in June 2021 and his current focus is on HVDC/FACTS projects, including renewable energy integration and power system planning studies. He has experience in control system designs and performing electromagnetic transient simulations in PSCAD and RSCAD/RTDS for power system studies and power electronics applications. In his Ph.D. research, he has worked on developing power hardware-in-the-loop (P-HIL) testbeds for microgrid and EV applications. He also has experience working as a Research Assistant at the Renewable-energy Interface and Grid Automation (RIGA) lab at the University of Manitoba from 2016-2021. Before joining the University of Manitoba, from 2012 to 2015, he has worked as an Energy Efficiency Engineer in sustainable development-related projects in Sri Lanka and South Asian countries.
Dr. Carl Ho received the BEng and MEng double degrees, in 2002, and the PhD degree, in 2007, in electronic engineering from the City University of Hong Kong. In 2007, he joined ABB Switzerland. He has been appointed as Scientist, Principal Scientist, and R&D Principal Engineer. In October 2014, he joined the University of Manitoba in Canada, where he currently holds positions of Professor, Associate Head (Electrical Engineering) of the Department of Electrical and Computer Engineering, and Canada Research Chair in Efficient Utilization of Electric Power. He established the Renewable-energy Interface and Grid Automation (RIGA) Lab at the University of Manitoba and takes up the challenge of research into Microgrid technologies, Photovoltaic Inverters, Power-Hardware-in-the-loop, Power Quality Conditioning and Electric Vehicles. Dr. Ho is currently an IEEE Senior Member and serves as an Associate Editor-in-Chief of the IEEE Journal of Emerging and Selected Topics in Circuits and Systems (JETCAS), and an Associate Editor of the IEEE Transactions on Power Electronics (TPEL) and the IEEE Journal of Emerging and Selected Topics in Power Electronics (JESTPE). He received the 2018 TPEL Prize Paper Award, the JESTPE Associate Editor Award in 2018 and 2019, and His student project team received “Best Student Team Regional Award” of the IEEE Empower a Billion Lives 2019 competition in the Americas region.
Watch the recorded webinar here: